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As previous work has highlighted the significance of the cannabinoid receptor 1 (CNR1) and fatty acid amide hydrolase (FAAH) genes with

respect to cannabis dependence (CD), this study sought to characterize the neural mechanisms that underlie these genetic effects. To

this end, we collected DNA samples and fMRI data using a cue-elicited craving paradigm in thirty-seven 3-day-abstinent regular marijuana

users. The participants were grouped according to their genotype on two single-nucleotide polymorphisms (SNPs) earlier associated

with CD phenotypes: rs2023239 in CNR1 and rs324420 in FAAH. Between-group comparisons showed that carriers of the CNR1

rs2023239 G allele had significantly greater activity in reward-related areas of the brain, such as the orbitofrontal cortex (OFC), inferior

frontal gyrus (IFG), and anterior cingulate gyrus (ACG), during exposure to marijuana cues, as compared with those with the A/A

genotype for this SNP. The FAAH group contrasts showed that FAAH rs324420 C homozygotes also had greater activation in widespread

areas within the reward circuit, specifically in the OFC, ACG, and nucleus accumbens (NAc), as compared with the FAAH A-allele

carriers. Moreover, there was a positive correlation between neural response in OFC and NAc and the total number of risk alleles

(cluster-corrected po0.05). These findings are in accord with earlier reported associations between CNR1 and FAAH and CD

intermediate phenotypes, and suggest that the underlying mechanism of these genetic effects may be enhanced neural response in

reward areas of the brain in carriers of the CNR1 G allele and FAAH C/C genotype in response to marijuana cues.
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INTRODUCTION

The main psychoactive compound in marijuana, delta-9-
tetrahydrocannabinol (D9-THC), binds to central cannabi-
noid, or CB1, receptors, in which it mimics the effects of
endogenously produced cannabinoids. The administration
of CB1 antagonists in mice results in a decrease in reward
behavior in response to cannabinoids and other substances
of abuse (Arnone et al, 1997; Berrendero et al, 2003; Castane
et al, 2002; Ledent et al, 1999), and the administration of the
antagonist SR141716A (Rimonabant) extinguishes reward-
related behaviors such as conditioned place preference and
self-administration suggesting that CB1 activation modulates
these behaviors (Gardner et al, 2002). In the first study of
cue- and drug-induced reinstatement of cannabinoid-seeking
in non-human primates, it was found that continuous
administration of rimonabant, but not naltrexone, decreased
cue-induced drug seeking, THC-induced drug seeking, and
the direct reinforcing effects of THC in squirrel monkeys
(Justinova et al, 2003, 2008). Moreover, single-cell recordings

in the ventral tegmental area (VTA), the origin of dopaminer-
gic cell bodies, have shown that D9-THC increases neuronal
firing rates in this area (Cheer et al, 2000). More
interestingly, increased dopamine (DA) neuronal firing
rates are coupled with increased DA neuronal bursts, and
these effects are blocked by SR141716A (Diana et al, 1998;
French et al, 1997). These findings suggest that cannabi-
noids increase DA activity in the NAc and prefrontal cortex
(PFC) by activating CB1 receptors in the VTA, which
increase DA neuronal firing and burst rates. In other words,
CB1 receptors increase DA activity by local disinhibitory
mechanisms. The gene that encodes for CB1, cannabinoid
receptor 1 (CNR1), thus likely modulates endocannabinoid
and DA-mediated reward signaling; consequently, it has
attracted substantial attention in the search for genetic
mediators of liability to substance use disorders (SUD).

Among human drug users, CNR1 variants have been
associated with both SUD phenotypes generally (eg, Ballon
et al, 2006; Comings et al, 1997; Covault et al, 2001; Herman
et al, 2006; Racz et al, 2003; Schmidt et al, 2002; Zhang et al,
2004; Zuo et al, 2007, 2009) and cannabis dependence (CD)
specifically (Agrawal and Lynskey, 2009; Hopfer et al, 2006),
although some groups have also reported null findings for
this gene (eg, Covault et al, 2001; Hartman et al, 2009; Li
et al, 2000). A report by Zhang et al (2004) suggest that one
variant, a G to A single-nucleotide polymorphism (SNP) in
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the third exon, may create an alternative CNR1 transcript in
the brain, and this SNP is associated with general liability to
substance abuse (Zhang et al, 2004). Our group has also
reported an association between this SNP (rs2023239) and
differences in two intermediate CD phenotypes: withdrawal
and craving after marijuana abstinence (Haughey et al,
2008). Specifically, withdrawal and craving among 105
young adults who reported smoking marijuana daily were
assessed at baseline and again after 5 days of abstinence.
The G allele of rs2023239 showed a significant abstinence by
genotype interaction on withdrawal, as well as a main effect
on overall levels of craving. However, results for this SNP
have not been uniformly consistent; using a case–control
design, Hartman et al, 2009 did not find an association
between rs2023239 variance and number of CD symptoms
in an adolescent sample.

Although significant effort has been devoted to analyzing
CNR1 associations with CD, another critical gene in the
endocannabinoid system, FAAH, has also shown associa-
tions with CD phenotypes. FAAH encodes for fatty acid
amide hydrolase (FAAH), an enzyme expressed in the brain
and liver that inactivates N-arachidonoyl-ethanolamine
(anandamide), an endogenous CB1 agonist (Cravatt and
Lichtmann, 2003). FAAH knockout mice (FAAH (�/�))
show exaggerated responses to anandamide, suggesting that
FAAH is the primary regulator of anandamide signaling
(Cravatt et al, 2001). Decreases in FAAH efficacy may
increase sensitivity to anandamide (Cravatt et al, 2001),
thereby increasing CB1 binding and affecting DA activity
along reward pathways. Alterations in endocannabinoid
signaling have been associated with a variety of SUD
phenotypes in animal models (Wiskerke et al, 2008).
Although no common human mutation causes FAAH
deletion, a missense SNP, C385A (rs324420), results in a
mutant form of FAAH with reduced expression and cellular
stability (Chiang et al, 2004). Among human marijuana
users, the C allele of this SNP has been associated with
increased risk for progression to CD (Tyndale et al, 2007).
Our study of young marijuana users also reported an
association between the C allele and craving after marijuana
abstinence (Haughey et al, 2008). In a follow-up study, we
administered marijuana to 40 young adult daily users after
24 h of abstinence, and found that the C allele was
associated with increased severity of withdrawal symptoms
after abstinence, and increased happiness after smoking
marijuana (Schacht et al, 2009).

In sum, the existing literature provides strong evidence
for the relevance of CNR1 and FAAH with respect to SUD
and CD phenotypes. However, much of this work has been
conducted with dichotomous diagnostic phenotypes. This
study aimed to use an imaging genomics approach (eg,
Hariri and Weinberger, 2003) to examine the effects of
variance in these genes on marijuana cue-elicited brain
activation, a finer-grained phenotype that is arguably more
proximal to the downstream effects of CNR1 and FAAH
variance. As we have reported earlier that cue reactivity in
chronic heavy marijuana users is associated with greater
blood oxygenated level dependent (BOLD) response in
reward-related areas of the brain (Filbey et al, 2009) and
that among heavy drinkers, genetic variants, including
rs2023239 in CNR1, modulate reactivity to the taste of
alcohol in the form of increased activation (Filbey et al,

2008; Hutchison et al, 2008), we hypothesized that genetic
risk, specifically, the G allele of rs2023239 in CNR1 and the
C allele of rs324420 in FAAH, would be associated with an
increased BOLD response to marijuana-related cues in
reward-associated brain areas.

MATERIALS AND METHODS

Participants

For this study, we re-analyzed earlier reported data by
genotype (Filbey et al, 2009). The earlier described
participants were 43 self-reported regular marijuana users
who were recruited through flyers and media advertisement
in the Albuquerque, NM metro area and provided informed
consent to participate in this study. Of these, six had
movement 42 mm and were excluded from the analyses.
All participants were right handed and free of MRI
contraindications (ie, no metallic implants, claustrophobia,
pregnancy, and so on). The participants included in this
study were required to speak English, to report regular
marijuana use at least four times per week over the previous
6 months, and to be willing to abstain from marijuana use
for 3 days. Participants were compensated for their
participation.

DNA was collected from buccal cells and extracted
according to modified standard procedures (Walker et al,
1999). Samples were genotyped on the CNR1 and FAAH
polymorphisms (CNR1/rs2023239 and FAAH/rs324420)
using Taqman PCR technology. Participants were grouped
according to their CNR1 and FAAH genotypes separately.
As there were insufficient numbers of individuals who were
homozygous for the rare allele for both SNPs, individuals
who were homozygous for the rare allele were combined
with the heterozygotes for the statistical analyses. For CNR1,
because there were no homozygotes for the G allele, the
heterozygotes (n¼ 10) were compared with the A/A
individuals (n¼ 24); for FAAH, A/A individuals (n¼ 5)
were combined with heterozygotes (n¼ 15), and compared
with C/C individuals (n¼ 17). Table 1 describes the
characteristics of the 37 participants included in this study.

Procedure

The study took place in two sessions. During the first
session, participants provided a saliva sample for DNA
analysis and a urine sample for toxicological analysis.
Participants were then scheduled for a second session, and
were instructed to abstain from marijuana use for 72 h
before this session. They were informed that a second urine
drug screen administered at this session would confirm
their abstinence. Although toxicological analysis was not
sufficiently sensitive to detect abstinence-induced changes
in urine levels of THC metabolites, bogus pipeline
procedures have shown efficacy in increasing the accuracy
of self-reports of drug use (eg, (Lowe et al, 1986)). During
the second session, participants also completed a battery of
neuropsychological tests (not reported here) and self-report
measures of mood and craving. Participants were then
placed in the MRI scanner. After collecting a high-
resolution anatomical scan for registration and localization
of the fMRI data, participants completed stop-signal and
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monetary incentive delay tasks (not reported here).
Participants were then administered a cue-elicited craving
paradigm, described below. The cue paradigm was the last
task completed during a 105-m scanning session.

MRI images were collected using a 3 Tesla Siemens Trio.
fMRI scans were collected using a gradient echo, echoplanar
sequence with ramp sampling correction using the inter-
commissural line (anterior commissure/posterior commis-
sure) as a reference (repetition time: 2.0 s, echo time:
27 ms, a: 701, matrix size: 64� 64, 32 slices, voxel size:
3� 3� 4 mm3). A tilting acquisition was applied during
the echoplanar imaging (EPI) sequence to compensate for
the problems of B0 field spatial distortion in the orbito-
frontal cortex (OFC). Slices were acquired higher than the
anterior commissure/posterior commissure, approximately
perpendicular to the sinuses (Deichmann et al, 2003;
Weiskopf et al, 2007). The high-resolution anatomical
MRI scan was collected with a multi-echo magnetization
prepared rapid acquisition gradient echo (MPRAGE)
sequence with the following parameters: repetition time/
echo time/inversion recovery time¼ 2300/2.74/900 ms, flip
angle¼ 81, field of view¼ 256� 256 mm, slab thickness¼
176 mm, matrix¼ 256� 256� 176, voxel size¼ 1� 1�
1 mm, number of echos¼ 4, pixel bandwidth¼ 650 Hz, total
scan time¼ 6 min.

We used a previously described marijuana tactile cue-
exposure paradigm (Filbey et al, 2009). Briefly, the
paradigm was presented in two separate EPI runs of 12
pseudorandom tactile presentations of a marijuana pipe
(marijuana cue� six trials) and a pencil (control cue� six
trials). Each trial consisted of a 20-s cue exposure period,
followed by a single 5-s urge question, and ended with a
20-s washout period to allow the hemodynamic response to
return to baseline before the next trial. The total number of
repetitions per run was 288 and the total task duration was
19 min and 12 s. The task was presented using a front
projection to a mirror system mounted on the head coil.
Responses were recorded using a fiber-optic pad. Stimulus
presentations were delivered using E-Prime (Psychology
Software Tools). The timing of the stimulus presentation

was synchronized with trigger pulses from the magnet to
ensure precise temporal integration of stimulus presenta-
tion and fMRI data acquisition. The University of New
Mexico Human Research Review Committee approved all
procedures used.

Analyses

Pre-processing of fMRI data followed a standard procedure.
The images were realigned using INRIalign, a motion
correction algorithm unbiased by local signal changes
(Freire and Mangin, 2001; Freire et al, 2002). Next, using
FEAT (fMRI Expert Analysis Tool) Version 5.98, part of FSL
(fMRIB’s Software Library, http://www.fmrib.ox.ac.uk/fsl/),
the following pre-statistics processing was performed: non-
brain tissue/skull removal using Brain Extraction Tool
(BET); spatial smoothing using a Gaussian kernel of FWHM
8 mm3; mean-based intensity normalization of all volumes
by the same factor; and high-pass temporal filtering
(Gaussian-weighted least-squares straight line fitting, with
sigma¼ 50.0 s). Time-series statistical analysis was carried
out using FILM (FMRIB’s Improved Linear Model) with
local autocorrelation correction. The first seven volumes of
all EPI runs were discarded to allow the MR signal to reach
steady state.

Explanatory variables were created by convolving the
stimulus timing files with a double gamma hemodynamic
response function in FEAT. A multiple linear regression
analysis was performed to estimate the hemodynamic
parameters for different explanatory variables (ie, active
condition for marijuana cues, active condition for control
cues) and a corresponding t-statistic indicates the signifi-
cance of the activation of the stimulus. Contrast maps were
created by contrasting marijuana active conditions vs
control active conditions. These maps were then registered
to a high-resolution image using FLIRT (FMRIB’s Linear
Image Registration Tool) (Jenkinson and Smith, 2001;
Jenkinson et al, 2002). Group analyses were carried out
using FLAME (FMRIB’s Local Analysis of Mixed Effects)
(Beckmann et al, 2003; Woolrich et al, 2004). Statistical

Table 1 Characteristics of the Participants

All
CNR1 FAAH

CNR1 G/A CNR1 A/A FAAH C/C FAAH A/A or A/C

N 37 10 24 17 20

Age (mean±SD) 23.27±6.56 23.3±7.54 23.54±6.63 23.82±7.04 22.8±6.26

Range¼ 18–46 Range¼ 18–44 Range¼ 18–46 Range¼ 18–46 Range¼ 18–44

Male (n, %) 29, 78.4% 8, 80%* 19, 79.2%* 11, 64.7%* 18, 90%*

Frequency of MJ use in days per week (mean±SD) 5.91±1.5 6.1±1.52 5.89±1.55 5.76±1.48 6.05±1.54

Range¼ 3–7 Range¼ 3–7 Range¼ 3–7 Range¼ 3–7 Range¼ 3–7

Duration of regular MJ use in years (mean±SD) 6.09±5.95 5.05±6.85 6.92±5.86 5.54±6.53 6.55±5.53

Range¼ 0.17–24 Range¼ 1–23 Range¼ 0.17–24 Range¼ 0.17–24 Range¼ 1–23

SCID MJ dependence (n, %) 25, 67.6% 4, 40% 19, 79.2% 11, 64.7% 14, 70%

SCID MJ abuse (n, %) 3, 8.1% 1, 10% 2, 8.3% 1, 5.9% 2, 10%

Abbreviation: MJ¼marijuana. *po0.05.
This table summarizes the demographic and marijuana use characteristics of the current sample.
N.B. CNR1 genotypes were not available for three of the participants.
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maps were then registered to the Montreal Neurological
Institute (MNI) template with a two-step process. First, EPI
images were registered to the high-resolution MPRAGE
image, which was subsequently registered to the 152 brain
average MNI template. These registration steps were
performed using FLIRT. After transformation of the masks
into MNI space, higher-level analysis was carried out using
FLAME. We set our threshold and multiple comparison
correction using FEAT’s cluster- thresholding method, which
first defines contiguous clusters using a Z statistic maximum
height threshold. Then, each cluster’s estimated significance
level (from Gaussian random field theory) is compared with
the cluster probability threshold. Only clusters that meet
these two levels of threshold are considered significantly
active. Group analyses, using the genotype groups defined
above, were carried out using FLAME (Beckmann et al,
2003; Woolrich et al, 2004). In addition, to determine
possible additive effects of the CNR1 and FAAH, we
correlated number of risk alleles (ie, CNR1 G and FAAH
C) with BOLD response to the marijuana vs the control cue.
Only participants with available genotypes for both CNR1
and FAAH were included in these analyses (N¼ 34). Of
these, 6 had 3 risk alleles, 12 with 2 risk alleles, 13 with 1
risk allele, and 3 with no risk allele. There were no
participants with four risk alleles.

Equivalence tests revealed that the CNR1 and FAAH
genotype groups were significantly different on gender.
Thus, all CNR1 and FAAH analyses controlled for the effects
of gender. There were no other significant differences
between any of the groups.

RESULTS

Comparisons of the CNR1 groups showed that those with
the G allele had significantly greater neural response to
marijuana cues (compared with control cues) in a cluster of
activation (volume¼ 10 719 voxels) encompassing the OFC,

IFG, insula and dorsal anterior cingulate gyrus (ACG) as
compared with the CNR1 A/A group (cluster-corrected
po0.05, z41.7). This cluster did not encompass other
reward areas such as the striatum or the VTA. There was no
significantly greater activation in the CNR1 A/A group as
compared with the G/A group.

Comparisons of the FAAH groups showed that the FAAH
C/C group had greater activation in a large cluster
(volume¼ 42 161 voxels) encompassing several areas of
the reward system including the OFC, IFG, ACG, striatum,
and VTA during marijuana vs control cues as compared
with the A/A or A/C group (cluster-corrected po0.05,
z41.9) (see list of local maxima in Table 2). There were no
significantly greater areas of activation in the FAAH A/A or
A/C group as compared with the C/C group.

In these analyses, there were five participants who had
both high-risk genotypes (ie, CNR1 G/A and FAAH C/C). To
account for this non-independence of the FAAH and CNR1
risk groups, the previous analyses were also carried out
while controlling for the other risk genotype (eg, controlling
for FAAH genotype in the CNR1 analyses). These analyses
found no significant difference between the groups.

Finally, correlation analyses indicated that there was a
significant positive correlation between number of risk
alleles (ie, CNR1 G, FAAH C) and response to marijuana
cues, such that the greater the number of risk alleles, the
greater the BOLD response to marijuana cues (vs control
cues) in one cluster (volume¼ 33 842 voxels) encompassing
reward areas, such as the OFC and striatum in addition to
cingulate, occipital, and cerebellar regions (see Table 3,
Figures 1 and 2).

DISCUSSION

The overarching goal of this study was to characterize the
mechanisms that underlie earlier described associations
between SNPs in CNR1 and FAAH and cue reactivity in
heavy marijuana users (Haughey et al, 2008; Schacht et al,
2009). Our results show that rs2023239 in CNR1 and
rs324420 in FAAH are associated with differential neural
response to marijuana cues, such that carriers of the CNR1
G allele and FAAH C homozygotes had greater neural
response in structures along the reward pathways. Further,
our results show that this pattern of heightened response to
cues increases as the number of risk alleles increases. These
findings provide further evidence for the relevance of CNR1
and FAAH to intermediate phenotypes of CD, and suggest

Table 2 Significant Clusters of Activation per Contrast

Z x y z Localization Brodmann area

(a) CNR1 G/A vs CNR1 A/A

3.29 24 30 18 R anterior cingulate BA 32

3.24 24 26 22 R medial frontal gyrus BA 9

3.19 �16 �16 �20 L parahippocampal gyrus BA 28

3.17 �12 �36 10 L thalamus F

3.04 34 26 28 R middle frontal gyrus BA 9

3.04 2 �104 12 R cuneus BA 18

(b) FAAH C/C vs FAAH A/A or A/C

4.30 42 �40 30 R supramarginal gyrus BA 40

4.22 8 �38 22 R posterior cingulate BA 23

4.08 �6 �38 18 L posterior cingulate BA 29

4.00 �4 �32 24 L posterior cingulate BA 23

3.98 �6 46 �2 L anterior cingulate BA 32

3.93 46 �12 �14 R middle temporal gyrus BA 21

(a) CNR1 G/A vs CNR1 A/A (cluster-corrected po0.05, z41.7); (b) FAAH C/C
vs FAAH A/A or A/C (cluster-corrected po0.05, z41.9).

Table 3 Areas of Significantly Positive Correlation Between
Number of Risk Alleles and BOLD Response to Cues (Cluster-
Corrected po0.05, z41.9)

Z x y z Localization Brodmann area

4.21 36 28 26 R middle frontal gyrus 9

4 �34 �48 16 L superior temporal gyrus 22

3.89 �8 �40 16 L posterior cingulate 29

3.89 16 �36 30 R cingulate gyrus 31

3.84 16 �42 �34 R cerebellar tonsil F
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that a dysregulation in the reward system may mediate
these genetic effects.

Although candidate genetic studies of CD to date are
relatively sparse, these findings are congruent with the
emergent literature (for a review, see (Agrawal and Lynskey,
2009)). Specifically, these findings support previous reports
that CNR1 variants are associated with CD (Hartman et al,
2009; Agrawal et al, 2008), and that FAAH C allele carriers
are more susceptible to marijuana dependence than FAAH
A allele carriers (Haughey et al, 2008; Schacht et al, 2009;
Tyndale et al, 2007). It is also noteworthy that the genetic

effects were greater for the FAAH gene than for the CNR1
gene in terms of activation cluster size (ie, 42 161 vs 10 719
voxels) and maximum z-scores (4.3 vs 3.3). This is of
particular interest given the recent reports from animal
studies suggesting that FAAH blockade has complex effects
that are similar to blocking CB1 receptors (Le Foll and
Goldberg, 2004). The mechanism for this effect has been
suggested to be not only increased anandamide levels but
also elevated levels of other ethanolamides such as
oleoylethanolamide (OEA) and palmitoylethanolamide
(PEA) (Solinas et al, 2006; Wise et al, 2008). Emergent

a

b

inferior frontal gyrus

anterior cingulate gyrus

orbitofrontal cortex

ventral striatum

anterior cingulate

thalamus

medial frontal gyrus

OFC

Figure 1 Differential neural response to cues by genotype groups. (a) CNR1 G/A vs CNR1 A/A; (b) FAAH C/C vs FAAH A/A or A/C (cluster-corrected
po0.05, z41.9).
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evidence for this effect particularly in response to nicotine
has also been reported (Forget et al, 2009; Scherma et al,
2008). Unfortunately, this study does not allow for a direct
investigation of the possible joint effects of cannabis and
nicotine because there were only 12 smokers in our total
sample.

The current findings add to this literature by elucidating
the underlying mechanisms related to this increased
sensitivity. The existing functional imaging study of cue
reactivity among heavy marijuana users (Filbey et al, 2009),
in addition to those of alcohol (Filbey et al, 2008), cocaine
(Goldstein et al, 2009), and nicotine users (Franklin et al,
2007) show that the mechanism of cue reactivity is
associated neural response in the pathways that underlie
the anticipation of reward. These findings also add to a
growing body of evidence suggesting that measures of
neuronal response to cues are sensitive to genetic variation
in genes such as DRD4 (with smoking cues (McClernon
et al, 2007); and alcohol cues (Filbey et al, 2008), and CNR1
(Hutchison et al, 2008), although replications of these results
are needed. This dysregulation of neural response in areas
related to reward anticipation may have a critical role in the
etiology of CD (Filbey et al, 2009), and genetic variation that
influences this dysregulation may exacerbate or mitigate the
development of dependence.

Our findings also suggest the presence of additive genetic
effects, such that a greater number of risk alleles across
CNR1 or FAAH are associated with greater response in the
reward system. A similar CNR1� FAAH interaction was
also noted by Haughey et al (2008), such that individuals
with the G/A–A/C genotype for CNR1–FAAH showed more
severe negative affect than other genotype groups after
abstinence and again after cue exposure. Additive genetic
influences have been reported earlier on subjective effects of
marijuana. Specifically, additive genetic influences (rather
than because of a single gene with large effects or
environmental influences) were found to explain the
variance in subjective response to marijuana (Lyons et al,
1997). Similar findings of additive genetic effects in CD have
also been reported in adolescents, which were particularly
evident in late adolescence (Kendler et al, 2008).

These findings have several important clinical implica-
tions. Pharmacological agents that target CB1 receptors
and/or elevate brain levels of endocannabinoids might
alleviate cannabis withdrawal and dependence differentially
by genotype. For instance, the FAAH inhibitor URB597,
which selectively increases anandamide levels in the brain
of rodents and primates, has been suggested as a possible
therapeutic avenue for the treatment of cannabis with-
drawal by significantly attenuating rimonabant-precipitated

Figure 2 Positive correlations between number of risk alleles and BOLD response in reward-associated areas. Analyses showed that the greater number
of risk alleles (ie, CNR1 G, FAAH C, the greater the BOLD response to cues in several important areas related to reward processes such as the NAc,
thalamus, ACG, OFC, and IFG (cluster-corrected po0.05, z41.9). Scatterplots illustrate the maximum z-scores for the OFC (r¼ 0.43, p¼ 0.01) and
striatum (r¼ 0.43, p¼ 0.01) (y axis) against number of risk alleles (x axis).
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withdrawal signs in THC-dependent mice although genetic
mediators of this effect have not yet been analyzed
(Schlosburg et al, 2009; Clapper et al, 2009). In addition,
the determination of the genetic factors that are associated
with CD holds promise for the future development of more
targeted or personalized treatment. In light of the Tyndale
et al (2007) finding that FAAH is associated with risk of
progression to CD, as well as our own findings that both of
the SNPs analyzed here show associations with intermediate
CD phenotypes among fairly young users, determination of
composite genetic risk for CD might allow intervention
before progression to full-blown dependence.

Some caveats must be taken into consideration in the
interpretation of these findings. First, the relatively small
sample size does not allow for a three-group analysis (ie,
with each allele combination for each SNP) or the ability to
control for the effect of one gene on the other (ie, the same
participants are used in both analyses and some overlap in
the high-risk and low-risk groups of each set of analyses).
Regarding the latter non-independence of the CNR1 and
FAAH analyses, it is possible that the effects found in each
are because of inclusion of persons with the alternative
high-risk genotype being examined in the other set of
analyses. The correlation analysis, to some extent, addresses
the non-independence of these genotypes. Replication of
these findings is necessary with a larger sample size that
permits a more thorough interrogation of each allele
contribution. There are also methodological issues that
limit the interpretation of these findings. As we described
in Filbey et al (2009), only 54% of the participants reported
the marijuana pipe as their primary mode of use. However,
keeping the cue consistent across participants controls for the
effects of subject-specific cues. Another limitation is fatigue,
which is a common caveat in fMRI studies. However, we
believe that any effects are minimal because the task is not
cognitively demanding.

To conclude, the present findings not only add to the
growing literature on the effects of biologically relevant
genes on the morbidity toward CD, but also suggest that
these effects may be related to hyperactivity in reward
pathways. Further, this study highlights the importance of
analyzing families of genes (vs single genes) and their
interactions to make better predictions of vulnerability to
cannabis use disorders. Future studies should determine the
mechanisms of gene � gene interactions, given that there is
a biologically plausible pathway for their interaction.
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