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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may lead to coro-

navirus disease 2019 (COVID-19) which, in turn, may be associated with multiple organ dysfunction.

In this review, we present advantages and disadvantages of cannabidiol (CBD), a non-intoxicating

phytocannabinoid from the cannabis plant, as a potential agent for the treatment of COVID-19. CBD

has been shown to downregulate proteins responsible for viral entry and to inhibit SARS-CoV-2

replication. Preclinical studies have demonstrated its effectiveness against diseases of the respiratory

system as well as its cardioprotective, nephroprotective, hepatoprotective, neuroprotective and

anti-convulsant properties, that is, effects that may be beneficial for COVID-19. Only the latter two

properties have been demonstrated in clinical studies, which also revealed anxiolytic and antinocicep-

tive effects of CBD (given alone or together with ∆
9-tetrahydrocannabinol), which may be important

for an adjuvant treatment to improve the quality of life in patients with COVID-19 and to limit

post-traumatic stress symptoms. However, one should be aware of side effects of CBD (which are

rarely serious), drug interactions (also extending to drugs acting against COVID-19) and the proper

route of its administration (vaping may be dangerous). Clearly, further clinical studies are necessary

to prove the suitability of CBD for the treatment of COVID-19.

Keywords: ACE2; cannabidiol; COVID-19; SARS-CoV-2; respiratory disease

1. Introduction

Coronavirus disease 2019 (COVID-19) is caused by a new virus entity, the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has grown to be one of the
most dangerous pandemics in the history of mankind [1–3]. Its death toll of more than
2.2 million (1 February 2021) people has a similar magnitude like the Asian flu (1957–1958;
1–4 million) and Hong Kong flu (1968–1970; 1–4 million) and is already higher than that
of the swine flu (2009–2010; up to 0.6 million; [4]). It is responsible for significantly more
fatalities than the severe acute respiratory syndrome (SARS, 2002–2004; 774 deaths) and
Middle East respiratory syndrome (MERS, 2012–present; 935 deaths) pandemics caused by
the SARS-CoV and MERS-CoV viruses, respectively [4]; the latter two, like SARS-CoV-2,
belong to the Coronaviridae family [5].

Vaccines protecting against SARS-CoV-2 have become available within a year of its
emergence and they appear to be effective and safe [6,7]. Although general vaccination
began in December 2020 in many countries, it will take months until the number of vac-
cinated people is high enough to provide herd immunity [6]. Therapeutic approaches
are largely symptomatic and supportive. Many drugs have been examined in clinical
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studies, mostly with disappointing results [2,3,8,9]. Nonetheless, the antiviral drug remde-
sivir shortens hospitalization time and the glucocorticoid dexamethasone even reduces
mortality [10,11]. In addition, it is suggested that alternative compounds, including phy-
tochemicals and natural agents targeting coronavirus development directly or as a result
of their immunomodulatory effects, could be applied as potential therapies and for the
prevention of COVID-19 [12–15].

The two senior authors of the present article (B.M. and E.S.) serve as editors of a
Special Issue of Int. J. Mol. Sci. dedicated to research on cannabidiol (CBD), which has been
suggested as a putative drug against COVID-19 but the views of different investigators on
this compound have been found to vary greatly. Thus, we decided to conduct a review on
the advantages and disadvantages of using CBD as a potential agent for the prevention
and treatment of COVID-19 based on scientific reports on its influence on selected disease
models and in clinical studies. We also summarize current knowledge about the effects of
this compound on SARS-CoV-2 infection. The aim of the present review is to examine the
suitability of CBD (Section 3) as an antiviral drug against SARS-CoV-2 (Section 4) and as
an agent for the prevention and treatment of disease states in the preclinical (Section 5) and
clinical (Section 6) settings. The review ends with a synopsis of the pros and cons of using
CBD as a potential drug to treat COVID-19 (Section 7).

2. Mode of Infection and Symptoms of COVID-19

Infection with SARS-CoV-2 occurs mainly by aerosol/droplet transmission through
direct contact with an infected person. The virus enters the body through the epithelial
cells of the tongue, bronchi and lungs after attaching to angiotensin-converting enzyme 2
(ACE2). An important function of membrane-bound and soluble ACE2 is degradation of
angiotensin II (Ang II) to angiotensin 1-7 (Ang 1-7), which exerts a beneficial influence, as
opposed to numerous detrimental effects of high concentrations of Ang II (for details, see
Figure 1 and Supplementary Table S1). The affinity of SARS-CoV-2 to ACE2 is determined
by glycoprotein S1 localized on the characteristic viral “spikes.” S1 binds to the enzyme via
the receptor-binding domain. Transmembrane serine protease 2 (TMPRSS2), which allows
the entry of the virus into the cytoplasm of host cells [1,2,5,16], also plays a significant role
in COVID-19 infection. Moreover, quite recently, it was shown that the membrane protein
neuropilin-1 (NRP1) promotes SARS-CoV-2 entry [17].

Figure 1. Expression of angiotensin-converting enzyme 2 (ACE2) in human tissues and organs, its counter-regulatory effects

on the ACE → Ang II → AT1 axis and interaction with coronavirus disease 2019 (COVID-19). ACE2 is ubiquitous and widely

expressed in many organs targeted and damaged by COVID-19 caused by severe acute respiratory syndrome coronavirus 2
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(SARS-CoV-2). It is a membrane-bound enzyme and an endogenous counter-regulator of the renin-angiotensin hormonal cascade. It

degrades angiotensin II (Ang II) to angiotensin 1-7 (Ang 1-7) that exerts beneficial effects opposed to those of Ang II. Ang 1-7 acts

through the G protein-coupled receptor MAS and, to a lesser extent, Ang II type 2 receptors (AT2). ACE and ACE2 and their major

products, Ang II and Ang 1-7, respectively, are linked in almost a ying/yang process, that is, when one decreases, the other increases

and vice versa [18]. Thus, reduced activity of the deleterious ACE → Ang II → Ang II receptor type 1 (AT1) axis (red) is coupled

with increased activity of the protective ACE2 → Ang 1-7 → MAS receptor axis (green). A lower ACE/ACE2 ratio (A) (occurring

in women, in exercise-trained individuals and patients well-treated with ACE inhibitors (ACE-I)) leads to beneficial effects such as

vasorelaxation, anti-inflammatory, anti-oxidative, anti-fibrotic and anti-thrombotic effects that predispose towards a lower risk of

cardiovascular disease (CVD) and better COVID-19 outcomes. By contrast, a high ACE/ACE2 ratio (B) that is increased in males,

elderly and many pathologies (especially CVD, pulmonary and renal diseases and obesity) may aggravate COVID-19 infection [19–22].

COVID-19 is usually asymptomatic. In most symptomatic patients, SARS-CoV-2
infection is mild with symptoms including fever, shortness of breath, coughing, fatigue,
anosmia, ageusia and muscle pain. Less common symptoms are nausea, vomiting and
diarrhea [1,2,16,23]. The risk of developing a severe form of the disease increases with male
gender, age and smoking; a further aggravation occurs in people with comorbidities such
as hypertension, diabetes, obesity, cardiovascular or chronic respiratory system diseases, in
which the concentration of the soluble form of ACE2 is substantially higher (Figure 1). By
contrast, in healthy individuals ACE2 activity is much lower or not detected [24,25].

Because ACE2 is ubiquitous and widely expressed in the heart, blood vessels, gut,
lungs (particularly in type 2 pneumocytes and macrophages) and in different types of
cells (for details, see Figure 1 and Supplementary Table S1), COVID-19 is a multiple-organ
disease, as summarized in Figure 2. One of the most common complications is an acute
respiratory distress syndrome (ARDS) resulting from the cytokine storm phenomenon, a vi-
olent and uncontrolled inflammatory reaction in response to the presence of the virus in the
host organism [1,2,16,23]. However, the negative consequences of COVID-19 are also con-
nected with other disorders of the respiratory system [1,16,26,27], with the cardiovascular
system (for review, see [1,16,22,26,28–30]) and with dangerous hematological complica-
tions, particularly thromboembolism [1,16,31–36]. In addition, pathological changes in the
renal [1,16,27,33,37,38], gastrointestinal, hepatic, pancreatic [1,16,27,31,39,40] and nervous
systems [1,27,41–43] have been described. Disturbances of the eyes [1,44], endocrine [45,46]
and reproductive functions [31,45–47], skeletal muscles [1,33,48] and skin [1,49,50] occur
as well (for details, see Figure 2).
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Figure 2. Systemic manifestation of COVID-19 infection. For respective literature, see Section 2. ALI, acute lung injury;

ARDS, acute respiratory distress syndrome.

3. Cannabidiol—Pharmacological Potential and Mechanism of Action

Non-intoxicating CBD is a phytocannabinoid isolated from the Cannabis sativa plant [13,14]
and, apart from the psychoactive ∆

9-tetrahydrocannabinol (THC), represents the best-studied
compound in this group.

Numerous studies have demonstrated a range of beneficial properties associated
with CBD, including anti-inflammatory, antioxidant, antiarthritic, cardio- and neuro-
protective, anticonvulsant, procognitive and analgesic effects (for detail, see reviews,
for example, [51–53]). At the moment, there are two indications. CBD (Epidiolex®) has
been approved for the treatment of intractable childhood-onset epilepsy (Dravet and
Lennox-Gastaut syndrome). Its combination with THC (nabiximols (Sativex®); 100 µL
of oromucosal spray contains 2.5 mg CBD and 2.7 mg THC) has been approved for the
therapy of spasticity in multiple sclerosis. Moreover, a potential therapeutic effect of CBD
is suggested for inflammatory and autoimmune diseases, anxiety disorders, schizophrenia,
depression, Alzheimer’s disease, Parkinson’s disease, chronic pain, cancer and diabetic
complications [54,55].

With respect to the potential use of CBD in COVID-19, sixteen publications have so
far appeared. Four publications are experimental (see Section 4) whereas another twelve
discuss data from the literature.

Within the group of papers dealing with the literature, seven publications consider
the potential use of CBD for the treatment of COVID-19 mainly due to its potent anti-
inflammatory activity [14,15,56–60]. However, as suggested by another three authors, there
is a lack of high-quality studies dedicated to the anti-inflammatory effects of CBD [61,62] or
to its effects on the central nervous system (e.g., anxiety or neurological complications) [63].
Two authors warn that the anti-inflammatory action of CBD might exert a potential detri-
mental effect on the immune system even leading to enhancement of viral infections [64,65].
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One should also consider that vaping CBD was associated with severe COVID-19 prob-
lems [57] and not overlook the unclear impact of “over-the-counter” CBD on the immunity
of the SARS-CoV-2 infection [62]. Due to the lack of rigorous legal regulations, CBD is
indeed commonly used as over-the-counter product, often of unapproved and unknown
composition [51,54,55].

The multi-directional properties of CBD mentioned above arise from its complex
mechanism of action. CBD has a low affinity for cannabinoid receptors (CB-Rs); it acts as
a negative allosteric modulator of cannabinoid receptor type 1 (CB1-R) and as an inverse
agonist of cannabinoid receptor type 2 (CB2-R). In addition, CBD acts via many other
molecular targets including G-protein-coupled receptors (GPCRs; for example, activa-
tion of the peroxisome proliferator-activated γ (PPARγ) receptor and serotonin 5-HT1A

and 5-HT2A receptors) and ionotropic receptors (e.g., activation of vanilloid TRPV1 but
inhibition of serotonin 5-HT3 receptors). Moreover, it inhibits various transporters (e.g.,
adenosine uptake) and enzyme activities (e.g., fatty acid amide hydrolase (FAAH), an
enzyme responsible for the degradation of the endocannabinoid anandamide) (for details
and other molecular targets, see reviews [51,66]). In order to explain its effect against
oxidative/nitrative stress, direct effects on the mitochondria and nuclei have been taken
into consideration as additional molecular mechanisms [66].

4. Potential Antiviral Activity of CBD

Various effects and molecular mechanisms of CBD have been described in the previous
section and some of them may be helpful in the context of the COVID-19 infection. Before
discussing them in preclinical studies (Section 5) and in the clinical setting (Section 6), we
would like to draw the attention of the reader to four experimental papers on the basis of
which the potential usefulness of CBD against the SARS-CoV-2 virus was suggested.

In the first paper, Wang et al. [67] examined whether the gateways for the entry of
the virus into cells, ACE2 and TMPRSS2, are affected by CBD. They found that high-CBD
Cannabis sativa extracts decreased ACE2 and TMPRSS2 protein levels in artificial human
3D models of oral, airway or intestinal tissues primed by tumor necrosis factor α (TNF-α)
plus interferon γ (IFN-γ). Extracts had different cannabinoid and terpene profiles and not
all extracts under study were equally effective. In particular, pure CBD failed to affect
ACE2 and TMPRSS2 protein levels in the airways, suggesting an entourage effect of the
components of the extracts; the possibility that a component in the extracts other than
CBD is the active principal component can so far not be excluded. Some extracts produced
undesired molecular effects, that is, upregulated the levels of the ACE2 gene and protein.
The idea of using high-CBD products (administered, for example, via mouth wash) to
limit the entry of SARS-CoV-2 into susceptible hosts seems to be attractive but requires
unambiguous scientific confirmation [56].

In the second paper (Raj et al. [68]), a direct antiviral effect of CBD was identified. The
authors first screened several cannabinoids in silico and then examined CBD and THC,
which appeared to have particularly promising effects in cultured Vero cells infected with
SARS-CoV-2. CBD exhibited an IC50 value of 8 µM for its inhibitory effect on SARS-CoV-2
replication and was at least as potent, in this respect, as the antiviral drugs remdesivir,
chloroquine and lopinavir, which are already used for the treatment of COVID-19 [2,3,8,9].
Again, these interesting data await unambiguous confirmation. By the way, CBD also
inhibits the replication of hepatitis C virus in vitro [69] but was not active against the
hepatitis B virus [69] or the Kaposi sarcoma-associated herpesvirus [70].

In the third and fourth experimental study suggesting the potential usefulness of CBD
for treatment of COVID-19 [71,72] an acute respiratory distress syndrome was induced
in mice by poly(I:C), a synthetic analogue of viral double-stranded RNA. Table 1 shows
that CBD indeed had a beneficial effect in this condition. Chronic CBD application was
also effective against the negative consequences of the infection in mice suffering from
Theiler’s murine encephalomyelitis virus, which induces demyelinating disease [73,74].
However, in the aforementioned in vivo experiments, the beneficial effects of chronic
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CBD administration were due to its anti-inflammatory properties and not direct antiviral
activities (Table 1).

5. Preclinical Studies on the Use of CBD for COVID-19 Treatment

As discussed in the previous section, CBD has a direct as well as an indirect antiviral
effect by reducing the number of ACE2 molecules via which the SARS-CoV-2 virus enters
cells. Table 1 shows that, in preclinical models, CBD has a beneficial effect in many
disease states also occurring in COVID-19. We mainly concentrated on the in vivo effects
of chronic CBD administration. Acute in vivo or in vitro effects were considered if they
were of interest with respect to COVID-19. Table 1 differentiates between prophylactic
(preventive) and therapeutic CBD administration, that is, whether CBD was given before
(or simultaneously with) the stimulus leading to the disease or after the pathological state
had fully developed, respectively.

First of all, we would like to underline the effectiveness of CBD found in experimental
models of respiratory failure. As already mentioned in the previous section, chronic CBD
administration reduced the acute respiratory distress syndrome and the cytokine storm
induced by polyriboinosinic:polyribocytidylic acid (poly(I:C)), a synthetic analogue of viral
RNA [71,72]. Interestingly, it increased the expression of blood apelin [72], which serves as
a catalytic substrate for ACE2 [24]. Moreover, the administration (mainly intraperitoneally
(i.p.)) of CBD improved lung function and reduced inflammation in experimental acute
lung injury (ALI) [75,76], pulmonary hypertension [77], lung injury induced by brain
hypoxic/ischemic damage [78] and asthma [79,80] (Table 1). The beneficial influence of
CBD resulted mainly from its significant anti-inflammatory properties [75,76,78–80]. Im-
portantly, CBD has been shown to improve lung function [76], gas exchange [77], blood
oxygen saturation [77] and to reduce allergen-induced airway obstruction [81]. Undoubt-
edly, a favorable effect of CBD is also the strong relaxation of the human pulmonary artery
determined under in vitro conditions [82]. The unequivocally beneficial action profile of
CBD is, however, contrasted by the results obtained by Karmaus et al. [83], who described
a proinflammatory effect of prophylactically administered CBD (once daily for 3 days) in
lipopolysaccharide-induced lung inflammation in mice. Moreover, CBD does not have
antitussive properties and does not affect trachea contraction [84]. In most studies, CBD
(i.p. or per os (p.o.) in doses of 5–10 mg/kg per day) was administered prophylactically or
therapeutically for 2–4 days only (Table 1). Only in the rat model of monocrotaline-induced
pulmonary hypertension CBD was given prophylactically for 3 weeks [77].

A cardioprotective influence of CBD has been mainly shown in experiments in which
prophylactic administration (predominantly in one dose given before occlusion or reper-
fusion) prevented the negative consequences of experimental myocardial infarction by
decreasing the infarct size or arrhythmia ([85–88]; Table 1). Beneficial therapeutic ef-
fects (including improvement of cardiac systolic and diastolic dysfunction, reduction in
coronary vasoconstriction, enhancement of mesenteric artery vasorelaxation and improve-
ment of metabolic parameters) of chronic CBD administration (1 to 11 weeks) have been
demonstrated in autoimmune myocarditis [89], diabetic cardiomyopathy [90], primary
and secondary hypertension [91,92] and in Zucker diabetic fatty rats [93]. As in the case
of respiratory failure, the favorable influence of CBD on the cardiovascular system is con-
nected mainly with its anti-inflammatory properties and, in addition, with its antioxidative,
antinitrative and antifibrotic effects (for details, see Table 1).

There is a significant association between severe COVID-19 and the occurrence of
thromboembolism (for review, see [1,16,32–36]). Unfortunately, only a few publications
have addressed the influence of CBD on the components or parameters of hemostasis. Thus,
the chronic administration of CBD normalized the plasma tissue plasminogen activator
and plasminogen activator inhibitor-1 enhanced by monocrotaline-induced pulmonary
hypertension in rats [77]. A decrease in platelet aggregation occurred after a single CBD
dose given before (but not after) myocardial infarction [87]. CBD (injected prophylactically,
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acutely or chronically) failed to reduce vessel thrombogenesis and did not modify human
platelet aggregation when given in vitro [94].

Nephroprotective properties of CBD have been described only for its acute admin-
istration (one or maximally two doses) in experimental models of ischemic acute kidney
injury [95–97]. They were connected with its anti-inflammatory, antioxidative and antini-
trative properties (Table 1).

With respect to disorders of the gastrointestinal tract, cases of acute and chronic pro-
phylactic CBD administration have been associated with anti-nausea and antiemetic effects
in experimental nausea and vomiting induced by lithium chloride via the activation of
serotonin 5-HT1A receptors [98]. Since CBD antagonizes 5-HT3 receptors under in vivo con-
ditions [99], its antiemetic effect might also result from the antagonism of 5-HT3 receptors.
Hepatoprotective properties of CBD have been described in models of liver injury induced
by hepatic artery and portal vein occlusion [100], chronic ethanol administration [101],
thioacetamide [102] or cocaine [103]. Again, the beneficial influence of CBD is connected
mainly with its anti-inflammatory and antioxidative properties. Unfortunately, with the
exception of chronic ethanol administration [101], CBD was only given once. Prophylac-
tic administration of CBD had a beneficial influence in experimental acute pancreatitis,
based on its anti-inflammatory properties [104]. Moreover, its therapeutic administration
at one [105] or three [106] doses was shown to reduce intestinal hypermotility (Table 1).
Interestingly, cannabis extract with a high CBD content reduced inflammatory changes in
the colon more strongly than CBD did alone [106].

The most common symptoms of COVID-19 include anosmia, ageusia and fever. A
PubMed-based search did not identify any publications showing that CBD is useful in the
case of loss of smell or taste. With respect to the nervous system, one might mention its
prohedonic activity, which occurred upon chronic administration in rats that were exposed
to chronic unpredictable mild stress [107]. Moreover, CBD is approved for the treatment of
Dravet syndrome, a condition that features recurrent seizures triggered by fever [108]. Its
effective anticonvulsant activity has been confirmed both in human (for review, see [108])
and different experimental models (for example [109,110], see Table 1). In addition, a
neuroprotective influence of CBD (administered once or twice) has been determined
in hepatic encephalopathy [102], perinatal hypoxia/ischemia encephalopathy [111,112],
sepsis-related encephalitis (including increase in integrity of blood-brain barrier; [113]) or
cerebral ischemia [114,115]. CBD (given for up to 10 days) had also a beneficial effect on
encephalomyelitis and multiple sclerosis induced by Theiler’s murine encephalomyelitis
virus [73,74].

Tears and the eyes in general, create portals for coronavirus entry. Although we did
not find any publications regarding the potential application of CBD for conjunctivitis (the
most common ocular manifestation of COVID-19), one should remember that CBD has
been suggested as a putative novel therapy for diabetic retinopathy [116] and retinal inflam-
mation ([117]; Table 1). Both protective effects are associated with the anti-inflammatory
and antioxidative actions of CBD which are also beneficial in the reduction of the negative
consequences of perinatal hypoxia/ischemia [111,112]. In this context, one may consider
the risk of neonatal asphyxia in children from mothers suffering from COVID-19 (Figure 2).

Unfortunately, there are limited publications suggesting potential beneficial effects
of CBD in endocrine, muscular and dermatological disorders, that also are listed among
those related to COVID-19 (Table 1). Thus, chronic CBD administration has been shown
to reduce hyperglycemia and to improve metabolic dysfunction [118,119] in experimental
models of obesity/diabetes, which is important if one considers that high glucose plasma
levels and diabetes are risk factors for COVID-19 [120]. Moreover, CBD was found to
prevent losses in functionality due to skeletal muscle degeneration [121]. Beneficial anti-
inflammatory properties of chronic and acute administration of CBD on skin function have
been shown in nude rats [122] and in vitro in human sebocytes, keratinocytes and skin
organ culture [123,124].
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Table 1. Potential use of cannabidiol (CBD) for COVID-19 treatment as suggested by preclinical studies.

Model Species
Dose and Route of

Administration of CBD
Effects

CBD Properties
Important for COVID-19;

Mechanisms
References

R
e

sp
ir

a
to

ry

ARDS induced
by poly(I:C)

mouse

5 mg/kg, i.p. therapeutic,
once a day for 3 days

cytokine storm and ARDS symptoms
totally or partially improved (blood
oxygen saturation, perivascular and

peribronchiolar interstitial
inflammatory infiltrate, lung

fibrosis, hypertrophy and
pulmonary edema)

↓IL-6 expression and ↓neutrophil
frequency in the lung

anti-inflammatory [71,72]

5 mg/kg, i.p. therapeutic,
once a day for 3 days

improvement of lung structure
↓T cells and ↑neutrophils returned

towards the normal
level,↑expression of apelin in the

blood

anti-inflammatory
regulation of apelin level

[72]

ALI induced by LPS mouse

1–80 mg/kg, i.p.
20 mg/kg, i.p. prophylactic; one

dose before ALI induction
(effects determined 1, 2 and 4

days after LPS)

lungs:↓leukocyte count; ↓leukocyte
migration into lungs;

↓MPO activity;
↓vascular permeability;

BALF: ↓pro-inflammatory cytokines
(TNF-α, IL-6) and chemokines

(MCP-1, MIP-2)

anti-inflammatory;
partially dependent on

adenosine A2A-Rs
[75]

20 or 80 mg/kg, i.p. therapeutic;
one dose 6 h after ALI induction

(effects determined 24 h after
LPS)

lungs: function improved:
↓resistance; ↓tissue damping and

stiffness; ↓leukocyte migration into
lungs; ↓MPO activity; ↓vascular

permeability;
BALF: ↓pro-inflammatory cytokines

(TNF-α, IL-6) and chemokines
(MCP-1, MIP-2)

anti-inflammatory;
antagonists not used

[76]
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Table 1. Cont.

Model Species
Dose and Route of

Administration of CBD
Effects

CBD Properties
Important for COVID-19;

Mechanisms
References

R
e

sp
ir

a
to

ry

lung inflammation
induced by LPS

mouse

75 mg/kg, p.o. prophylactic;
once a day for 3 days; LPS 1 h

before
the last dose of CBD

lungs: ↑inflammatory
changes in tissue;

BALF: ↑pro-inflammatory TNF-α,
IL-6, IL-23, GCSF; slight
↑inflammatory cells

pro-inflammatory;
antagonists not used

[83]

pulmonary
hypertension

due to monocrotaline
rat

10 mg/kg, i.p. prophylactic;
once a day for 21 days

heart: ↓right ventricular
systolic pressure;

↔ right hypertrophy and lung
edema; ↑blood oxygen saturation;

plasma: ↓leukocytes

↑blood oxygen
saturation;

antagonists not used
[77]

lung injury
induced by brain
hypoxic–ischemic

damage

newborn
piglets

1 mg/kg, i.v. therapeutic;
one dose 30 min
after lung injury

improvement of
gas exchange; ↑TLC,
lungs: ↓ histological
damage and edema;

↓leukocyte migration into lungs,
↓inflammatory changes;
↓vascular permeability;

BALF: ↓pro-inflammatory
cytokines (IL-1)

anti-inflammatory
5-HT1A-Rs in all

parameters, except for
improvement of gas

exchange; site of CBD
action (brain and/or

lungs) unclear

[78]

asthma induced
by ovalbumin

rat
5 mg/kg, i.p. therapeutic;

once a day for 2 days
serum: ↓ IL-4, IL-5, IL-6, IL-13

and TNF-α; ↔ IL-10
anti-inflammatory;

antagonists not used
[79]

mouse
5 or 10 mg/kg, i.p. therapeutic;

once a day for 3 days

↓airway resistance;
↓alveolar collapse areas;
↓collagen in airways
and alveolar septa;

lung and BALF: ↓pro-inflammatory
cytokines (IL-4, IL-5, IL-13)

anti-inflammatory;
anti-fibrotic;

airway resistance:
CB1-Rs

other effects: CB1/2-Rs

[80]

airway obstruction
induced by
ovalbumin

guinea-
pig

1 mg/kg, i.v. prophylactic;
one dose

↓airway obstruction induced
by ovalbumin

bronchoprotective;
reduction of the
antigen-induced

contractile responses

[81]

cough induced by
aerosolized
citric acid

guinea-
pig

prophylactic; aerosolized
solution of 10 mg/mL for

20 minutes using a nebulizer

cough inhibition only in three out
of eight animals

antagonists not used [84]
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Table 1. Cont.

Model Species
Dose and Route of

Administration of CBD
Effects

CBD Properties
Important for COVID-19;

Mechanisms
References

R
e

sp
ir

a
to

ry

isolated trachea
guinea-

pig
10 µM

↔ resting basal tension;
↔ contractions induced electrically

or by methacholine
antagonists not used [84]

isolated human
pulmonary artery

human 0.1–30 µM
almost full

concentration-dependent
vasorelaxation

endothelium-dependent
vasodilatation mediated
via K+ channels, IP, EP4,

TRPV1 and PPARγ
receptors

[82]

C
a

rd
io

v
a

sc
u

la
r

myocardial infarction
induced

by left coronary
artery occlusion

rabbit
0.1 mg/kg, i.v. prophylactic;

one dose before occlusion and
one before reperfusion

heart: ↓infarct area; ↑left ventricular
function; ↑blood supply to
perfusion-defective region;
↓neutrophil infiltration;

↓MPO activity
plasma: ↓cardiac troponin I

anti-inflammatory;
cardioprotective;

potentially
anti-ischemic;

antagonists not used

[85]

rat

5 mg/kg, i.p. prophylactic
before occlusion and once a day

thereafter for 7 days

heart:↓infarct size; ↔HR;
↓leukocyte infiltration;

serum: ↓IL-6 CRP, TNF-α

anti-inflammatory;
cardioprotective;

potentially anti-ischemic;
antagonists not used

[86]

50 µg/kg, i.v. prophylactic;
one dose before occlusion

heart: ↓infarct area;
↓arrhythmias; ↔HR

antiarrhythmic;
cardioprotective;

antagonists not used

[87]

50 µg/kg, i.v. prophylactic;
one dose before reperfusion

heart: ↓infarct area;
↔arrhythmias

50 µg/kg, i.v. prophylactic;
one dose before occlusion

heart: ↓arrhythmias;
↔HR

antiarrhythmic;
potential involvement of

A1-Rs
[88]

autoimmune
myocarditis

mouse
10 mg/kg, i.p. therapeutic;

once a day for 46 days

heart: improved systolic and
diastolic dysfunction and
myocardial stiffness; ↓left

ventricular inflammatory changes;
↓necrosis; oxidative stress; ↓ fibrosis

anti-inflammatory;
anti-oxidative;
anti-fibrotic;

cardioprotective
antagonists not used

[89]
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Table 1. Cont.

Model Species
Dose and Route of

Administration of CBD
Effects

CBD Properties
Important for COVID-19;

Mechanisms
References

C
a

rd
io

v
a

sc
u

la
r

diabetic
cardiomyopathy

induced by
streptozotocin

mouse
1, 10 or 20 mg/kg, i.p.

therapeutic;
once a day for 4 or 11 weeks

heart: ↑diastolic and systolic left
ventricular function; ↓oxidative and

nitrative stress;
↓inflammation and NF-κB

activation; ↓ fibrosis;
↓expression of pro-fibrotic genes

anti-inflammatory;
antioxidative; anti-nitrative;

anti-fibrotic;
cardioprotective;

antagonists not used

[90]

changes in vascular
endothelium function in
Zucker diabetic fatty

rat
10 mg/kg, i.p.

therapeutic for 7 days

mesenteric arteries:
↑endothelium-dependent

vasorelaxation due to COX- or
NO-mediated mechanisms;

serum: ↓cardiovascular biomarkers
(C-peptide, insulin and intracellular

adhesion molecule-1); ↔glucose,
body weight

vasoprotective;
improvement in the profile

of cardiovascular and
metabolic parameters

[93]

hypertension:
primary (SHR);

secondary
(DOCA-salt)

rat
10 mg/kg, i.p. therapeutic;

once a day for 2 weeks

↔blood pressure, HR;
heart: ↓oxidative stress;

↓carbachol-induced coronary
constriction; ↓left ventricular

cardiomyocyte width;
↔left ventricular hypertrophy

anti-oxidative;
antagonists not used

[91,92]

H
e

m
a

to
lo

g
ic

a
l

myocardial infarction
induced by left

coronary
artery occlusion

rat

- 50 µg/kg, i.v.
before occlusion
- 50 µg/kg, i.v.

before reperfusion

↓platelet aggregation
↔platelet aggregation

antagonists not used [87]

pulmonary
hypertension

due to monocrotaline
rat

10 mg/kg, i.p. prophylactic;
once a day for 21 days

plasma: ↓ t-PA and PAI-1 antagonists not used [77]

pharmacologically
induced thrombus in

ear venules
mouse

5 mg/kg, i.p. prophylactic;
acute: one dose 30 min before

thrombus induction;
chronic for 3 days

acute: ↔vessel thrombogenesis
chronic: ↔vessel thrombogenesis antagonists not used [94]
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Table 1. Cont.

Model Species
Dose and Route of

Administration of CBD
Effects

CBD Properties
Important for COVID-19;

Mechanisms
References

H
e

m
a

to
lo

g
ic

a
l

platelet aggregation human in vitro, 0.1—10 µM
↔resting platelets;

↔activation induced by thrombin
receptor activating peptide

[94]

R
e

n
a

l acute kidney injury
induced by renal is-
chemia/reperfusion

rat

5 mg/kg, i.v.
two doses before occlusion and

after reperfusion

kidney:↓tubular necrosis and
dilatation; ↓inflammatory changes;
↓NF-κB, COX-2, TNF-α and iNOS;

serum: ↓oxidative
and nitrative stress

anti-inflammatory;
anti-oxidative;
anti-nitrative;

nephroprotective;
antagonists not used

[95]

5 mg/kg, i.a.
one dose after occlusion

kidney:↓MPO activity;
↓IL-1, TNF-α and NO levels; ↓lipid

and protein oxidative damage;
↔nitrite/nitrate levels

anti-inflammatory;
anti-oxidative;

nephroprotective;
CB1-Rs and CB2-Rs

expression unaltered

[96]

mouse
10 mg/kg i.p. one dose

before reperfusion

kidney: pattern of
innate lymphoid cells

restored to control values

nephroprotective;
antagonists not used

[97]

G
a

st
ro

in
te

st
in

a
l

nausea or
vomiting induced by

lithium chloride

rat
shrew

prophylactic;
acute: 5 and 20 mg/kg, s.c.

chronic: 5 mg/kg s.c. for 7 days

acute and chronic:
↓ nausea and/or vomiting

anti-nausea,
antiemetic;
5-HT1A-Rs

[98]

hepatic ischemia/
reperfusion injury
induced by hepatic

artery and
portal vein
occlusion

mouse
3 or 10 mg/kg, i.p. prophylactic;
one dose before reocclusion or

90 min after

serum: ↓AST and ALT;
liver: ↓inflammatory changes;

↓cell apoptosis (10 mg/kg only);
↓pro-inflammatory cytokines;

↓oxidative and nitrative stress (10
mg/kg only); ↓neutrophil migration

to liver tissue

anti-inflammatory;
antioxidant;

anti-nitrative;
hepatoprotective;

independent of CB2-Rs

[100]

liver injury and
steatosis induced by

chronic ethanol
administration

mouse
5 or 10 mg/kg, i.p. prophylactic
for 11 days during the ethanol

exposure

serum: ↓AST and ALT;
liver: ↓inflammatory changes;
↓pro-inflammatory chemokines;

↓neutrophil accumulation;
↓oxidative burst of neutrophils;
↓ oxidative and nitrative stress

anti-inflammatory;
anti-oxidative;

hepatoprotective;
antagonists not used

[101]
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Table 1. Cont.

Model Species
Dose and Route of

Administration of CBD
Effects

CBD Properties
Important for COVID-19;

Mechanisms
References

G
a

st
ro

in
te

st
in

a
l

hepatic encephalopathy
due to thioacetamide

mouse
5 mg/kg, i.p. therapeutic;

one dose after
thioacetamide injection

liver: ↔necrosis;
plasma: ↓ALT and AST,
ammonia and bilirubin

partly hepatoprotective;
antagonists not used

[102]

acute hepatic toxicity
induced by cocaine

mouse

30, 60 and 90 mg/kg,
i.p. prophylactic;

acute 30 min before
cocaine injection

liver: ↓acute inflammation and
damage (↓histological changes)

serum: ↓ALT;
↓acute behavioral seizure

anti-inflammatory;
FAAH inhibitor did not
modify cocaine-induced

changes in liver

[103]

acute pancreatitis
induced by cerulein

mouse
0.5 mg/kg, i.p. prophylactic;

8 doses (2 before and 6
simultaneously with cerulein)

pancreas: ↓pathological changes,
↓MPO activity in pancreas tissue;

plasma: ↓amylase and lipase;
↓Il-6 and TNF-α

anti-inflammatory;
pancreas-protective;
possibly via GPR55

(presence in pancreas)

[104]

inflammation and
intestinal hypermotility
induced by croton oil

mouse

5 and 10 mg/kg,
i.p. therapeutic;

one dose to mice with
inflammation

intestine:↓hypermotility
involvement of CB1-Rs

(but not CB2-Rs)
and FAAH

[105]

colitis in-
duced by intracolonic
dinitrobenzensulfonic acid

mouse
5–30 mg/kg, i.p. and

10–60 mg/kg, p.o. therapeutic
for 3 days after colitis induction

intestine:↓hypermotility;
↔colitis;

↓colon weight and MPO activity

anti-inflammatory;
antagonists not used

[106]

N
e

u
ro

lo
g

ic
a

l

chronic
unpredictable

mild stress model of
depression

rat
10 mg/kg, i.p. prophylactic

for 28 days

higher rate of body weight gain and
sucrose preference

compared to controls

prohedonic;
antagonists not used

[107]

various acute seizure
models

rat
mouse

one different i.v. dose
dependent on the model

acute antiseizure activity
antiseizure activity [109]
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Table 1. Cont.

Model Species
Dose and Route of

Administration of CBD
Effects

CBD Properties
Important for COVID-19;

Mechanisms
References

N
e

u
ro

lo
g

ic
a

l

status epilepticus—
spontaneous

recurrent seizures
(RISESRS) model

rat 200 mg/kg for 7 weeks

↓seizure burden and
motor comorbidities;

reversal of the epilepsy-induced
cognitive deficits

[109]

seizure induced by
pentylene-tetrazole

mouse
60 mg/kg, i.p. prophylactic;

once before induction of
epileptic attack

↓seizure duration;
↓EEG changes

anti-convulsant;
CB1, CB2 and TRPV1

receptors
[110]

hepatic
encephalopathy

induced by
thioacetamide

mouse
5 mg/kg, i.p. therapeutic;

one dose after
thioacetamide injection

↑neurological and
cognitive functions;

↑activity;
↓activated astrocytes

procognitive;
neuroprotective;

antagonists not used
[102]

sepsis-related
encephalitis

induced by LPS
mouse

3 mg/kg, i.v.
one dose

simultaneously with LPS

↑integrity of blood–brain barrier;
↓leukocyte margination

in brain vessels;
↔level of oxidative stress;

↓TNF-α and COX-2

anti-inflammatory;
neuroprotective

[113]

perinatal hypoxic-
ischemic encephalopathy
induced by occlusion

of carotid arteries
newborn

piglet

1 mg/kg, i.v. therapeutic;
one dose 30 min

after induction of
brain injury

brain: ↓EEG changes;
↓neuronal mortality;
↓excitotoxicity; ↓IL-1;
↓ oxidative stress

anti-inflammatory;
anti-oxidative;

neuroprotective
partially dependent on
5-HT1A-Rs and CB2-Rs

↔brain
endocannabinoid levels

[111]

1 mg/kg, i.v. therapeutic;
one dose after induction

of brain injury

brain: ↑activity (EEG);
↓neuronal mortality;

↓excitotoxicity; ↓oxidative stress;
↓TNF-α; effects on excitotoxicity,

oxidative stress and TNF-α additive
to those of hypothermia

anti-inflammatory;
anti-oxidative;

neuroprotective;
antagonists not used

[112]



Int. J. Mol. Sci. 2021, 22, 1986 15 of 42

Table 1. Cont.

Model Species
Dose and Route of

Administration of CBD
Effects

CBD Properties
Important for COVID-19;

Mechanisms
References

N
e

u
ro

lo
g

ic
a

l

cerebral ischemia
(stroke model)

induced by MCA
occlusion

mouse
0.1; 1; 3 mg/kg, i.p.

two doses
(before and after occlusion)

brain: ↑neurological
function and motor

coordination;
dose-dependent ↓infarct area

↓MPO activity and ↑CBF (tested
only at 3 mg/kg);

blood: ↔pCO2, pO2

anti-inflammatory;
neuroprotective;

partially dependent on
5-HT1A-Rs

independent of CB1, CB2

and TRPV1 receptors

[114,115]

encephalomyelitis
induced by TMEV

mouse

180 mg/kg, i.p. twice daily
starting 2 days before

(prophylactic) or 3 days after
infection (therapeutic)

↓acute behavioral seizures
from 5 days (prophylactic)

and 6 days after infection onward
(therapeutic)

anti-inflammatory,
anti-oxidative
(not confirmed
experimentally)

[73]

multiple sclerosis
induced by TMEV

mouse

5 mg/kg, i.p. therapeutic,
once a day for 7 days

sub chronic effects (after 8 days):
↓transmigration of leukocytes to the

nervous parenchyma
by downregulating the expression
of VCAM-1, CCL2 and CCL5 and

the proinflammatory cytokine
IL-1β and

by attenuating
the activation of microglia

anti-inflammatory
partial involvement of

adenosine A2A-Rs
(experiments with

an appropriate
antagonist)

[74]

same treatment
for 10 days

chronic effects (after 80 days):
improvement of motor deficits
↓microglial activation and

pro-inflammatory
cytokine production

E
y

e retinal inflammation
due to LPS

rat
1 mg/kg, i.p. prophylactic

before LPS treatment
↓retinal TNF-α levels

anti-inflammatory; due
to A2-Rs but not A1-Rs

[117]
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Table 1. Cont.

Model Species
Dose and Route of

Administration of CBD
Effects

CBD Properties
Important for COVID-19;

Mechanisms
References

E
n

d
o

cr
in

e

high-fat diet-
induced obesity

rat
10 mg/kg, i.p. prophylactic

for 2 weeks

plasma: ↓insulin;
skeletal muscle: improved insulin

signal transduction
and glycogen recovery

↓lipotoxicity, leading to
insulin-sensitization

in myocytes;
↓expression of

CB1, CB2, TRPV1
and 5-HT1A receptors

[118]

type 1 diabetes by
streptozotocin
submitted to

chronic cerebral
hypoperfusion

rat
10 mg/kg, i.p. 30 min before

and for 30 days after
cerebral hypoperfusion surgery

↓body weight;
plasma:↓hyperglycemia;

↑insulinemia;
↓AGEs and fructosamine;

↓dyslipidemia (LDL, HDL, TGs and
total cholesterol levels); ↓AST and

ALT; ↑memory performance

improvement of
metabolic dysfunction;

hepatoprotective;
neuroprotective;

anti-inflammatory

[119]

M
u

sc
u

la
r Duchenne muscular

dystrophy caused by
dystrophin
deficiency

mouse
60 mg/kg, i.p., therapeutic;

three times a week for 2 weeks

muscle: prevention of the
functionality loss and tissue
degeneration; restoration of

locomotor activity;
↓inflammation (IL-6, TNF-α);

muscle strength and
autophagy restored

anti-inflammatory;
(involvement of TRP
channels—based on

in vitro
experiments)

[121]

S
k

in

skin irradiated with
UVA/UVB

nude rat
2.5 g in 100 g petrolatum

applied to the back of rats every
12 h for 4 weeks

↓UV-induced changes in
inflammation; apoptosis and

oxidative stress

prevention of
UV-induced metabolic
changes in epidermal

keratinocytes

[122]

cultured human
sebocytes and
human skin

organ culture

human 10 µM

↓lipogenic actions of
arachidonic acid

and a combination of linoleic acid
and testosterone; suppression of

sebocyte proliferation

anti-inflammatory
(adenosine A2aRs);

sebostatic; lipostatic;
antiproliferative (TRP4)

[123]

experimental model
of allergic contact

dermatitis in
keratinocytes

human 5, 10, 20 µM

inhibition of
polyinosinic-polycytidylic

acid-induced release of MCP-2, IL-6,
IL-8 and TNF-α;

no cytotoxic effect

anti-inflammatory
via CB2 and TRPV1

receptors
[124]
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Table 1. Cont.

Model Species
Dose and Route of

Administration of CBD
Effects

CBD Properties
Important for COVID-19;

Mechanisms
References

O
th

e
r

sepsis induced by
cecal ligation
and puncture

rat

10 mg/kg, i.p.
Acute—therapeutic;

one dose (after sepsis induction)

↓lipid peroxidation in lung, heart
and kidney; ↓oxidative protein

damage in spleen, liver and heart;
↓oxidative damage of proteins in

striatum, cortex and hippocampus;
↑oxidative damage of proteins

in lung

anti-oxidative;
organo-protective;

pro-oxidative in lungs

[125]

10 mg/kg, i.p.
Chronic—therapeutic;

once daily for 9 days; first dose
after sepsis induction

↓mortality; improvement of
memory-related processes; ↓lipid

peroxidation in kidney;
↓oxidative protein damage in

spleen, liver, heart

anti-oxidative;
organo-protective;

procognitive

The following antagonists were used to describe the multimodal mechanism of cannabidiol (CBD), namely A2-Rs due to blockade by ZM241385 [75,117]; A1-Rs by DPCPX [88]; 5-HT1A-Rs by WAY100635
[78,98,111,114,115]; CB1-Rs by AM251 [80,110] and by rimonabant [105,114,115], CB2-Rs by AM630 [80,110,111,114,115,124] or by SR144528 [105]; TRPV1 by capsazepine [82,114,115], SB36679 [110] or 5′-iodo-

resiniferatoxin [124] and IP, EP4 and PPARγ (antagonism via L161982, Cay10441 and GW9662, respectively [82]. Moreover, some experiments were performed on knockout mice, that is, CB2
-/- [100]. 5-HT1A-Rs,

serotonin receptor type 1A; A1A-R, A2A-R, adenosine receptor type A1A and A2A; AGEs, advanced glycation end-products; ALI, acute lung injury; ALT, alanine transaminase; ARDS, acute respiratory distress
syndrome; AST, aspartate transaminase; BALF, bronchoalveolar lavage fluid; CB-R, cannabinoid receptor; CB1-R, CB-R type 1; CB2-R, CB-R type 2; CBD, cannabidiol; CBF, cerebral blood flow; CCL2, CCL5,
C-C motif chemokine ligand 2 and 5; COX-2, cyclooxygenase 2; CRP, C-reactive protein; DOCA, deoxycorticosterone acetate; DPCPX, 8-cyclopentyl-1,3-dipropylxanthine; EEG, electroencephalography; EP4,
prostanoid EP4 receptor; FAAH, fatty acid amide hydrolase; GCSF, granulocyte colony stimulating factor; GPR55, G protein-coupled receptor, resembling to some extent the CB-Rs; HDL, high density lipoprotein;
HR, heart rate; i.a. intraarterially; IL-n, interleukin n, for example, IL-1, interleukin 1; iNOS, inducible nitric oxide synthase; IP, prostacyclin receptor; i.p. intraperitoneally; i.v. intravenously; LDL, low-density
lipoprotein; LPS, lipopolysaccharide; MCA, middle cerebral artery; MCP-1, monocyte chemoattractant protein-1; MIP-2, macrophage inflammatory protein-2; MPO, myeloperoxidase; NF-κB, nuclear factor κB;
NO, nitric oxide; PAI-1, plasminogen activator inhibitor-1; pCO2, partial pressure of carbon dioxide; p.o. per os, orally; pO2, partial pressure of oxygen; poly(I:C), polyriboinosinic:polyribocytidylic acid, synthetic
analogue of viral double-stranded RNA; PPARγ, peroxisome proliferator-activated receptor type gamma; SHR, spontaneously hypertensive rats; STZ, streptozotocin; TGs, triglycerides; TLC, total lung capacity;
TMEV, Theiler’s murine encephalomyelitis virus-induced demyelinating disease; TNF-α, tumor necrosis factor α; t-PA, tissue plasminogen activator; TRP, transient receptor potential; TRPVn, transient receptor
potential vanilloid subfamily member n; UVA and UVB, ultraviolet A and B; VCAM-1, vascular cell adhesion molecule-1. ↑, increase; ↓, decrease; ↔, no change.
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Importantly, the effectiveness of CBD has been shown in multiple organ dysfunction.
Acute and chronic administration in an experimental model of sepsis reduced mortality,
lipid peroxidation and oxidative damage of proteins in many vital organs [125]. However,
one should keep in mind that CBD, given acutely, had a pro-oxidative effect and increased
oxidative damage of proteins in the lungs ([125]; Table 1).

In summary, preclinical studies show that acute and chronic administration of CBD
through prophylactic and/or therapeutical interventions has numerous beneficial effects
in organs that are also targeted by the coronavirus; they mainly result from CBD’s anti-
inflammatory and antioxidative actions. The precise mechanism(s) is/are still unknown
although in a few studies, the involvement of cannabinoid CB1, CB2, GPR55, vanilloid
TRPV1, adenosine A2A and serotonin 5-HT1A receptors has been described (Table 1).

6. Use of CBD for COVID-19 Treatment? Clinical Studies

In the ClinicalTrials.gov database (accessed on 1 February 2021), we found six clinical
trials (two active, not recruiting; two not yet recruiting; and two recruiting) in which the
use of CBD is being addressed in the context of COVID-19. Two studies are dedicated to
the use of CBD in patients with mild to moderate symptoms, including the study entitled
“Cannabidiol for COVID-19 patients with mild to moderate symptoms” (daily doses of
300 mg for 14 days) and the study entitled “Synthetic CBD as a therapy for COVID-19”
(dose and duration of administration not specified). Another two studies are dedicated to
patients with higher risk, including the study entitled “Cannabidiol treatment for severe and
critical coronavirus (COVID-19) pulmonary infection” (daily doses of 300 mg for 14–28 days
or until discharge) and the study entitled “Cannabidiol in patients with COVID-19 and
cardiovascular disease or risk factors” (daily doses of 525 mg/70 kg for 28 days). The fifth
study, entitled “Outcomes mandate national integration with Cannabis as medicine for
prevention and treatment of COVID-19 (OMNI-Can)” will examine the efficacy and safety
of using medical cannabis for chronic medical conditions, including COVID-19 (dose and
duration of administration not specified). As suggested by the title “Burnout and distress
prevention with cannabidiol in front-line health care workers dealing with COVID-19,”
the final study is dedicated to the hospital staff rather than to patients (daily doses of
175 mg/70 kg for 28 days).

Since it will take some time until the latter studies have been completed, the question
arises as to whether there are other clinical studies based on CBD that may point to its
suitability for the prevention/treatment of COVID-19 (Table 2). In the ClinicalTrials.gov
database (accessed on 1 February 2021), there are 186 items regarding formulations con-
taining CBD (59 studies were signed as completed; the results of 13 of the latter trials are
presented in the database and 9 of them have been published). In contrast to the results
of preclinical studies (Table 1), so far, no clinical studies have demonstrated promising
effects of CBD on patients with respiratory failure (Table 2). There are two publications
based on a few patients with chronic obstructive pulmonary disease (COPD). CBD given
acutely together with THC in vaporized form [126] or as a sublingual spray [127] had no
or only minimal beneficial effects on airway function, exertional breathlessness at rest and
during exercise and simulated breathlessness (Table 2). Clinical trials indicating a potential
usefulness of CBD in cardiovascular, hematological and renal symptoms associated with
COVID-19 could not be found.

ClinicalTrials.gov
ClinicalTrials.gov
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Table 2. Efficacy and safety of cannabidiol in clinical studies.

Disease n

* Study Design;
Dose of CBD

and THC
Application

Final Results and/or Conclusions,
Properties Important for COVID-19

Profile Safety/Side Effects References

R
e

sp
ir

a
to

ry

COPD

16
* Cannabis 35 mg

(THC, 18.2%,
CBD, 0.1%); acute

vaporized
no effect on airway function,

exertional breathlessness at rest
and exercise

[126]

9

* THC: CBD
2.7:2.5 mg/spray;

maximum single dose
of 4 sprays

oromucosal
spray

no effect on simulated breathlessness
in COPD subjects;

↓unpleasantness of breathlessness as
judged by descriptors

[127]

G
a

st
ro

in
te

st
in

a
l

chemotherapy-
induced nausea
and vomiting

(CINV)

7

* THC: CBD
2.7:2.5 mg/spray,

<3 sprays within 2 h after
chemotherapy plus
<8 sprays each at

days 2, 3 and 4

oromucosal
spray

better protection against delayed CINV
compared to standard antiemetic

therapy alone
well tolerated [128]

cancer-related anorexia-
cachexia syndrome

99
* THC 2.5 mg and CBD

1 mg; twice daily 1 h
before meals for 6 weeks

p.o.
no effect on patients’ appetite

or quality of life
well tolerated [129]

aspirin-induced increased
gut permeability

10 * CBD:600 mg p.o. ↓increased gut permeability [130]

moderately
active Crohn’s disease

20
* CBD 10 mg/kg twice

daily for 8 weeks
p.o. no clinical improvement

excellent tolerability
and safety profile

[131]

ulcerative
colitis

60

* 250 mg CBD-rich extract
(up to 4.7% THC) twice

daily before meals
for 10 weeks

p.o.
no effect on ulcerative colitis
but ↑quality of life outcomes

mild/moderate,
mainly

dizziness and somnolence
[132]

P
sy

ch
ia

tr
ic

anxiety in healthy
volunteers

40 * CBD:300 mg acute p.o. ↓anxiety to simulated public speaking [133]

10 * CBD:400 mg acute p.o.
↓subjective anxiety to a simulated

public speaking test,
↑mental sedation

[134]
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Table 2. Cont.

Disease n

* Study Design;
Dose of CBD

and THC
Application

Final Results and/or Conclusions,
Properties Important for COVID-19

Profile Safety/Side Effects References

P
sy

ch
ia

tr
ic

anxiety in healthy
volunteers

60
* CBD:100, 300 and

900 mg acute
p.o.

↓subjective anxiety with a
dose-dependent bell-shaped curve

(effective dose:300 mg only)

CBD 300 mg has a lower
sedation level than

clonazepam
[135]

naïve social
anxiety disorder

24 * CBD:600 mg acute p.o.

↓subjective anxiety,
↓cognitive impairment and

discomfort in speech performance;
no changes in blood pressure, heart

rate and skin flow

absence of psychoactive or
cognitive effects

[136]

10 * CBD:400 mg acute p.o.
↓subjective anxiety, changes in

regional cerebral flow
[137]

stress-related disorders 11
** CBD: flexible doses,
starting from 25 to 49

mg/d for 8 weeks
p.o.

↓stress-related disorders (including
↓nightmares)

well tolerated, no patients
discontinued treatment
due to side effects; mild

side effects: fatigue,
reduced concentration;

gastrointestinal
bloating or pain

[138]

psychiatric patients with
anxiety or poor sleep

103
CBD:25 mg/d to

50–75 mg/d;
for 1–3 months

p.o.
↓anxiety in a sustained manner,

↓sleep disturbances

well tolerated, fatigue
(may be related to dosing),

mild sedation,
dry eyes

[139]

patients at high risk for
psychosis

32
* CBD:600 mg/day

for 1 week
p.o.

cortisol reaction: tended to be better;
anxiety: tended to be better;
↓negative self-statement

[140]

33
* CBD:600 mg

acute
p.o.

putative antipsychotic effect by
normalizing motivational salience
and moderating motor response

[141]

cannabis use disorder 128
* THC:CBD 2.7:2.5

mg/spray for 6 days, up to
32 sprays/d

oromucosal
spray

↓anxiety,
↓depression,
↓craving

no differences in adverse
effects between THC:CBD

and placebo group
[142]
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Table 2. Cont.

Disease n

* Study Design;
Dose of CBD

and THC
Application

Final Results and/or Conclusions,
Properties Important for COVID-19

Profile Safety/Side Effects References

P
sy

ch
ia

tr
ic

regular cannabis users 20
** CBD:200 mg

for 10 weeks
p.o.

↓depressive symptoms,
↓psychotic symptoms,
↑attentional switching,

↑verbal learning, ↑memory

[143]

drug-abstinent patients
with history

of heroin abuse
42

* CBD 400 or 800 mg/d
for 3 days

p.o.

↓anxiety,
↓craving,
↓HR,

↓salivary cortisol levels

no serious adverse events;
mild side effects:

diarrhea, headache,
tiredness, fatigue

[144]

volunteers pre-selected for
high paranoid traits

32
* CBD:600 mg

acute
p.o.

no benefits on anxiety
or persecutory ideation

[145]

schizophrenia 42
*** CBD; week 1: gradual
increase to 800 mg/day;
weeks 2–4:800 mg/day

p.o.
↓positive psychotic symptoms (no

difference compared to amisulpride),
mitigation of psychotic symptoms

marked tolerability /
safety (with respect to

weight, prolactin, hepatic
or cardiac functions)

compared with current
medications

[146]

schizophrenia

88
* CBD:1000 mg/d for

6 weeks on top of
antipsychotic medication

p.o.

↓positive psychotic symptoms,
↓impressions and severity of illness,
cognitive performance and overall
functioning tended to be improved

good tolerance;
diarrhea, nausea,

headache, infections,
insomnia; mild ↓blood
pressure and moderate

chest pain; no significant
changes in prolactin,

weight, liver function,
inflammatory markers or

HDL cholesterol levels

[147]

36
* CBD:600 mg/day

for 6 weeks
p.o.

no improvement of cognitive
impairments and

psychotic symptoms in stable
antipsychotic-treated outpatients

well tolerated with no
worsening of mood,

suicidality or movement
side effects; sedation

[148]
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Table 2. Cont.

Disease n

* Study Design;
Dose of CBD

and THC
Application

Final Results and/or Conclusions,
Properties Important for COVID-19

Profile Safety/Side Effects References

P
a

in

chronic pain 94
CBD-rich hemp extract 1

for 8 weeks
soft gels

↓chronic pain and ↑life quality
(↓opioid use, ↑sleep quality)

[149]

chronic pain in kidney
transplant patients

7
CBD increasing from 50 to

150 mg twice a day
for 3 weeks

p.o.
2 patients, total improvement of pain
4 patients, partial pain improvement

no serious adverse effects;
dizziness, nausea, dry

mouth, drowsiness,
intermittent

episodes of heat

[150]

chronic pain in patients
with fibromyalgia

20

* THC:CBD (mg)
1. 22.4: < 1
2. 13.4:17.8
3. < 1:18.4

single vapor
inhalation

small analgesic responses
limited, such as dizziness

and nausea
[151]

neuropathic pain in
patients with MS

20
THC:CBD

2.7:2.5 mg/spray for
4 weeks, 8 sprays/d

sublin. spray
↓pain rating,
↑life quality

few side effects: dizziness,
nausea, dry mouth and

weakness
[152]

peripheral neuropathic
pain associated with
diabetes or allodynia

380

THC:CBD 2.7:2.5
mg/spray for 38 weeks,
<8 sprays per 3 h and
<24 sprays every 24 h

oromucosal
spray

↓pain in the majority of patients

safe and well tolerated;
patients did not seek to
increase their dose with
time but 23% of patients
ceased medication due to

adverse effects
(2% infections)

[153]

painful diabetic
neuropathy

30

* THC:CBD 2.7:2.5
mg/spray; dose was
titrated over 2 weeks,

followed by a 10-week
maintenance phase

(4 sprays/d)

sublin. spray
no significant improvements in pain

rating and life quality
[154]

advanced cancer patients
with chronic pain

199
* THC:CBD 2.7:2.5

mg/spray: initially 4 up to
7 sprays/d

oromucosal spray
average pain score not superior to

placebo
[155]
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Table 2. Cont.

Disease n

* Study Design;
Dose of CBD

and THC
Application

Final Results and/or Conclusions,
Properties Important for COVID-19

Profile Safety/Side Effects References

N
e

u
ro

lo
g

ic
a

l

Dravet
syndrome
in children

198
* CBD: 10 and 20 mg/kg/d

for 14 weeks
p.o.

↓frequency of seizures,
improvement of patients’ condition;
similar effectiveness of both doses

↓appetite, diarrhea,
somnolence, pyrexia,

and fatigue,
↑aminotransferases in

patients also taking
valproate sodium; at
10 mg/kg/d better

tolerance and safety profile

[156]

108
* CBD:20 mg/kg/d

for 14 weeks
p.o. ↓frequency of drug-resistant seizures

somnolence, ↓appetite,
diarrhea,

↑aminotransferases in
patients also

taking valproate

[157]

Lennox–Gastaut syndrome
in children and adults

225
* CBD:10 or 20 mg/kg/d

for 28 days
p.o.

↓epileptic seizures in some patients,
↓total seizure frequency,

improvement of patients´ condition

somnolence, ↓appetite,
diarrhea (at 20 mg/kg/d),

threefold
↑aminotransferases

[158]

171
* CBD:20 mg/kg/d

for 14 weeks
p.o. ↓frequency of drug-resistant seizures

in general good tolerance
of CBD as add-on therapy;

mild or moderate side
effects: ↓appetite,

vomiting, diarrhea,
somnolence, fever

[159]

multiple
sclerosis

160

* THC:CBD
2.7:2.5 mg/spray up to a

maximum of 120 mg THC
and 120 mg CBD/day with

no more than 20 mg of
each in any 3-h period for

6 weeks

oromucosal
spray

↓spasticity associated with MS

good tolerance, no effects
on cognition or mood;

dizziness, disturbance in
attention, headache,
fatigue, somnolence,

disorientation, feeling
drunk, vertigo, application

site discomfort, nausea,
diarrhea, mouth ulceration

[160]
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Table 2. Cont.

Disease n

* Study Design;
Dose of CBD

and THC
Application

Final Results and/or Conclusions,
Properties Important for COVID-19

Profile Safety/Side Effects References

N
e

u
ro

lo
g

ic
a

l

multiple
sclerosis

137

THC:CBD 2.7:2.5
mg/spray up to 48

sprays/day for 21—814
days (extension study of

Wade et al. [160])

oromucosal
spray

↓spasticity associated with MS,
clinical effect maintained after a long

treatment period

serious adverse effects:
seizures, fall, aspiration

pneumonia, gastroenteritis;
mild adverse effects: sore

mouth, oromucosal
disorder, oral pain, altered

attention, dizziness,
diarrhea, nausea

[161]

12
THC:CBD 5.4:5.0 mg (two

sublin. sprays at a
15-min interval)

oromucosal
spray

↓spasticity
postural and motor tests unchanged

no differences in adverse
events between THC:CBD

and placebo groups
[162]

460

* THC:CBD
2.7:2.5 mg/spray;

maximally 12 sprays/day
for 12 weeks

oromucosal
spray

↓spasticity (resistant to previous
antispasticity treatment) and

associated symptoms in patients with
moderate to severe MS

[163]

Skin
psoriasis

atopic dermatitis
5
5

CBD-enriched ointment,
twice daily, for 3 months

ointment
in both diseases,

improved skin parameters
no irritant or allergic

reactions
[164]

* double-blind, placebo-controlled, randomized clinical trial; ** open-label study; *** double-blind, randomized clinical trial with active control group (amisulpride) CBD, cannabidiol; CINV, chemotherapy-
induced nausea and vomiting; COPD, chronic obstructive pulmonary disease; d, day; HDL, high-density lipoprotein; HR, heart rate; MS, multiple sclerosis; n, number of patients; p.o. per os; sublin., sublingual;
THC, ∆

9-tetrahydrocannabinol; ↑, increase, ↓, decrease, ↔, no effect. 1 15.7 mg CBD, 0.5 mg THC, 0.3 mg cannabidivarin, 0.9 mg cannabidiolic acid, 0.8 mg cannabichrome and >1% botanical terpene blend.
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With respect to the gastrointestinal complications related to COVID-19 (see Figure 2),
the effect found for Sativex® (combination of 2.7 mg THC and 2.5 mg CBD), given on
top of the standard antiemetic therapy against delayed chemotherapy-induced nausea
and vomiting, is remarkable but is based on 7 patients only [128]. CBD given orally with
THC did not increase appetite or raise the quality of life in patients with cancer-related
anorexia-cachexia syndrome [129]. Regarding inflammatory-related disorders, a single
dose of CBD reduced aspirin-induced increased gut permeability [130], suggesting its
effectiveness in disorders such as inflammatory bowel disease. On the other hand, CBD
given chronically, alone or with THC, did not lead to any clinical improvement in patients
with moderately active Crohn’s disease [131] or ulcerative colitis [132] (Table 2).

Although the effect of CBD on organ function has been considered only in a few
clinical trials (as opposed to preclinical studies), its suitability for the treatment of some
psychiatric disorders including post-traumatic stress, generalized anxiety, panic disorder
and social anxiety, which may also occur in the context of COVID-19, is suggested by
numerous clinical studies (for review, see [108]) (Figure 2, Table 2). CBD (given acutely or
chronically) has been shown to reduce subjective anxiety and/or other reactions induced by
stress (e.g., a simulated public speaking test) in healthy volunteers [133–135], people with
naïve social anxiety disorder [136,137], patients with post-traumatic stress disorders [138],
some psychiatric patients [139], persons at high risk for psychosis [140,141] and present
cannabis [142,143] and past heroin users [144]. Only in a study on volunteers preselected
for high paranoid traits [145] did CBD fail to attenuate anxiety. The possibility that CBD
may be an effective treatment for schizophrenia has also been considered. CBD was shown
to reduce positive psychotic symptoms of schizophrenia in studies by Leweke et al. [146]
and McGuire et al. [147] but not in the trial by Boggs et al. [148] (Table 2).

COVID-19 is associated with painful symptoms, including myalgia, headache and
abdominal or chest pain (Figure 2). Antinociceptive activity of CBD has been found in pa-
tients suffering from chronic pain [149], including pain in kidney transplant recipients [150]
and in individuals with fibromyalgia [151], multiple sclerosis [152], diabetes and allody-
nia [153,154] but not in patients with advanced cancer [155]. In the latter studies, CBD
was mainly administered in combination with THC as an oromucosal or sublingual spray
(Table 2).

SARS-CoV-2 patients may develop encephalopathic symptoms ranging from alteration
in consciousness to delirium, seizures and muscular damage (Figure 2). On the other hand,
individuals with epilepsy and multiple sclerosis develop changes that not only increase
their risk of morbidity from COVID-19 but may also mask the presentation of acute
respiratory symptoms which can potentially delay the diagnosis of COVID-19. Published
trials (Table 2) refer to the treatment of Dravet syndrome in children [156,157] and Lennox–
Gastaut syndrome in children and adults [158,159]. Cannabidiol was administered at a
dose of 10 or 20 mg/kg/day for 14 weeks and was found to reduce seizure frequency.
Sativex® was used as an oromucosal spray in patients with multiple sclerosis and was
found to reduce spasticity [160–163]. As described above, Epidiolex® (which contains a
100 mg/mL solution of CBD for oral administration) and Sativex® have been approved
for the treatment of intractable childhood-onset epilepsy (Dravet and Lennox–Gastaut
syndromes) and as a therapy for spasticity in multiple sclerosis, respectively.

In one study [164], chronic use of CBD-enriched ointment improved skin parameters
in inflammatory skin diseases (Table 2). However, Epidiolex® induced a delayed skin rash
in one patient with medically refractory epilepsy [165].

Importantly, as shown in Table 2, CBD, given alone or together with THC, is generally
well tolerated, usually with no severe adverse events or clinical worsening. The most
common side effects are nausea and vomiting, loss of appetite, diarrhea, fever and an
increased concentration of aminotransferases. Even orally administered spray can pro-
duce mild to moderate unwanted effects including dizziness, nausea, diarrhea, oral pain
and oromucosal disorder. Unfortunately, these side effects, to some extent, resemble the
symptoms of COVID-19.
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In summary, considering the effects of COVID-19 on multiple organs (Figure 2), a
CBD-based pharmacotherapy that has been approved by the health authorities is limited
to the treatment of some rare types of seizures and the spasticity associated with multiple
sclerosis. In addition to these neuroprotective properties, anxiolytic and antinociceptive
effects of CBD have been shown in clinical trials. Thus, CBD, given alone or together
with THC, may be important as an adjuvant treatment to improve the well-being and
quality of life of patients with COVID-19 and may even be used after recovery to limit
post-traumatic stress symptoms. Further clinical studies are necessary to clarify beneficial
observations obtained in small groups of patients or in cases where conflicting results
have been found. Unfortunately, clinical studies (Table 2) have often failed to confirm the
promising observations found in preclinical experiments (Table 1).

7. Opportunities, Challenges and Pitfalls of Cannabidiol Use as a COVID-19 Therapy

Cannabidiol is an interesting medicine with various pharmacological properties. Our
main question is whether it is justified to recommend CBD as a therapy for COVID-19.
Unfortunately, despite the identification in preclinical studies of some beneficial properties
that are important for COVID-19 treatment, there are still numerous questions that need to
be addressed. Preclinical and clinical effects (including their sites of action), the quality of
CBD preparations, the route of administration, dosing, side effects and drug interactions
are discussed in detail below.

First, the potential effects of CBD against COVID-19 may comprise the following four
mechanisms.

a. Numerous preclinical findings (Table 1) and reviews regarding the potential use
of CBD in COVID-19 treatment [14,15,56–60] suggest that CBD has beneficial anti-
inflammatory and antioxidative effects, which can be expected to improve the sys-
temic symptoms that are characteristic of SARS-CoV-2 infection. Unfortunately, a
comparison of the results of preclinical (Table 1) and clinical (Table 2) studies demon-
strates that the favorable preclinical properties may not translate into the clinical
setting (or that the appropriate clinical studies have not been conducted; see also
reviews [58,61,62]). Above all, there is no confirmation of such beneficial effects of
CBD with regard to its effects on respiratory failure. In addition, careful examination
of whether the influence of CBD on the immune system could exacerbate viral in-
fection is required (reviews [64,65]). Indeed, viral, fungal infections and pneumonia
infections are listed among the side effects of CBD [166–169]. Moreover, it has to
be considered that CBD, which was found to have a pro-oxidative effect in one
preclinical study ([83]; Table 1), might even aggravate the feared cytokine storm.

b. Anxiolytic and antinociceptive properties of CBD, given alone or together with THC,
which have been identified in clinical studies (Table 2), suggest that it may be used
as an adjuvant treatment to improve the quality of life of patients with COVID-
19 and, even after recovery, may limit post-traumatic stress symptoms. However,
well-designed double-blind, placebo-controlled clinical trials regarding the efficacy
of CBD against COVID-19-associated panic, anxiety, depression and neurological
complications are so far missing [63].

c. The decreases in ACE2 and TMPRSS2 protein expression in a human tissue model are
extremely interesting but so far this effect has only been shown in an in vitro study
by Wang et al. [67]. Even if this mechanism was also found to occur in vivo, certain
issues would have to be considered, for example, the mechanism was found for some
CBD-rich extracts but did not occur when pure CBD was used. The consequence
would be that an extract would need to be administered instead of a pure substance
and oral administration would not be possible (for problems associated with topical
administration, see below). Next, the question arises about the extent to which
ACE2 and TMPRSS2 have to be decreased in order to obtain a robust antiviral
effect. Moreover, it is unclear whether a reduction in ACE2 (the importance of which
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is highlighted in Figure 1) will lead to problems other than the struggle against
the virus.

d. Inhibition of the replication of SARS-CoV-2 by CBD in a cell line also represents
an interesting mechanism, although this effect has only been shown in a study by
Raj et al. [68] and transfer to the in vivo situation of the human body is unclear.

Second, a wide range of over-the-counter CBD-based products is now available,
for example, capsules, sprays, oil droppers, gummies and plant materials to be used by
smoking, dry vaporizers and e-liquid vaporizers [54]. Unfortunately, these products may be
of questionable quality, are not subject to appropriate safety controls and are characterized
by unknown CBD content. There is little evidence of the pharmacological activity or
health benefits of non-commercial CBD preparations [54,167]. Importantly, people taking
non-commercial preparations on their own should be very careful due to the possibility
of dangerous consequences, such as respiratory depression following, for example, CBD
gummy ingestion [170] or CBD oil overdose [171]. One should also consider that the impact
of “over-the-counter” CBD on the immunity of the SARS-CoV-2 infection is unclear [62].
The use of CBD as a medication in products like Epidiolex® and Sativex® (see Section 3) is
approved, that is, these products fulfil the essential criteria related to efficacy, safety and
pharmaceutical quality.

Third, one of the most severe COVID-19 symptoms is connected with disorders of the
respiratory system (i.e. ARDS). Therefore, inhalation might be a particularly appropriate
route of CBD administration. The relatively high bioavailability level of ~30% (whereas oral
administration leads to a value of 6% only [172]) is another argument in favor of this route
of administration. However, the vaping of cannabis products (including CBD) may lead to
acute pulmonary toxicity [57,173], casting some doubt on the suitability of this method of
administration; it is unclear as to whether similar problems would occur if pure CBD was
used instead. Since Epidiolex® has been administered effectively as an oromucosal spray
(Table 2), the use of a mouthwash with CBD-rich extracts might represent an interesting
strategy to lower ACE2 topically [67]. It is of interest that the bioavailability of oromucosal
administration of CBD is not higher than that of its oral application [172].

Fourth, with respect to dosing, most data refer to neurological disorders and this is
in line with the approved indications (reviewed by Britch et al. [54]; Millar et al. [174]).
Unfortunately, clinical trials dedicated to the use of CBD to treat inflammation are virtually
nonexistent and clinically meaningful conclusions can therefore not be drawn [54]. A
special note is necessary for Sativex® (2.7 mg THC plus 2.5 mg CBD per spray). If one
uses 48 sprays per day (the maximum dose used in the study of Wade et al. [160] for
the treatment of multiple sclerosis), the dose of CBD will be 120 mg, corresponding to
~1.7 mg/kg. This value is much lower than that planned for use in the three CBD trials
listed on ClinicalTrials.gov (2.5–7.5 mg/kg; see Section 6) or that recommended for use to
treat seizures in children (10–20 mg/kg). CBD may increase the positive effects of THC
and simultaneously attenuate the negative ones. A closer look, however, shows that both
assumptions frequently do not hold true [175–179].

Fifth, CBD is generally and also according to the Critical Review Report 2018 of the
World Health Organization [180], regarded as a safe compound (for review, see [54,181]).
However, the authors of the latter two reviews postulated the need to conduct additional
clinical trials. Indeed, various side effects of CBD have recently been described [166–169].
In addition to the increased risk of infection mentioned above, the increased tendency
for respiratory depression and aspiration to occur, that is, symptoms also occurring in
COVID-19, should be considered.

Sixth, CBD interacts with drug-metabolizing enzymes both of phase I (CYP3A4,
CYP2C9 and CYP2C19) and phase II (uridine-5′-diphosphoglucurosonyltransferase) [181–183].
If CBD is used as an anticonvulsant, its combination with other anticonvulsants like
clobazam or valproate might increase the risk of side effects [182,184], for example, throm-
bocytopenia was identified in one-third of 87 pediatric patients treated concurrently with
cannabidiol and valproate [184]. Before CBD is used for the treatment of COVID-19, its pos-
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sible interaction with the frontline therapy against COVID-19 should be carefully checked.
The combination of CBD and glucocorticoids might lead to an increased plasma concentra-
tion of dexamethasone, since some glucocorticoids are substrates for CYP3A4 [185]. Due to
the high therapeutic index of acutely administered glucocorticoids, this drug interaction
may be tolerated. The situation is, however, entirely different for the antithrombin warfarin,
the plasma level of which is also increased by CBD [183,186]. In this case, the interaction
may lead to life-threatening bleeding.

8. Conclusions

COVID-19 is associated with multiple organ dysfunction/failure and a high mortality
rate. The COVID-19 pandemic has made everyday life difficult and vaccination against
SARS-CoV-2 has only just begun (and its final success is still unknown). New mutations
of SARS-CoV-2 are appearing [187], so new promising therapies against COVID-19 are
constantly being suggested. These include natural products, for example, CBD, a non-
intoxicating phytocannabinoid from the cannabis plant with valuable pharmacological
properties including strong anti-inflammatory, antioxidant, antiemetic, anticonvulsant,
antipsychotic and anxiolytic properties. The broad pharmacological effectiveness and
potential sites of action of CBD are shown in Figure 3. Besides its well-known antioxidant
properties, downregulation of ACE2 and TMPRSS2 proteins (which are responsible for the
entry of the SARS-CoV-2 virus into host cells) [67] and inhibition of SARS-CoV-2 replica-
tion [68] have only been shown very recently. Results require confirmation by independent
groups and have to be demonstrated in humans in vivo. Numerous preclinical studies
have shown the effectiveness of CBD in treating diseases of the respiratory system (includ-
ing ARDS, one of the most dangerous symptoms of COVID-19) and its cardioprotective,
nephroprotective, hepatoprotective, neuroprotective and anticonvulsant properties, that
is, properties that could be beneficial for the treatment of COVID-19 (Section 5, Table 1).
The beneficial influence of CBD results mainly from its significant anti-inflammatory and
antioxidant properties. The anti-inflammatory properties of CBD are also responsible for a
reduction in the short- and long-term consequences of viral infection, as suggested by a
few in vitro and in vivo experiments (Section 4).

Figure 3. Potential therapeutic effect of cannabidiol against the SARS-CoV-2 virus infection. Three mechanisms have to be

considered. The first and second mechanisms are the inhibitory effects on virus entry [67] and replication [68], respectively.

These mechanisms have been described only recently and it is unclear whether they also occur in the human body. The

third mechanism is a beneficial effect against complications which may also occur under a SARS-CoV-2 virus infection. In

animal studies such a beneficial effect has been shown in five organ systems (green lines; Table 1) whereas in humans an

effect on neurological and psychiatric disorders has been shown only (blue line; Table 2). ACE2, angiotensin-converting

enzyme 2; CBD, cannabidiol; TMPRSS2, transmembrane serine protease 2.
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Unfortunately, so far, clinical studies have not confirmed the beneficial anti-inflam-
matory properties of CBD but it is suggested that the anxiolytic and antinociceptive
properties of CBD (given alone or together with THC) may be important regarding its use
as an adjuvant treatment to improve the quality of life of patients with COVID-19 and, after
recovery, to limit post-traumatic stress symptoms (Section 6, Table 2). When using CBD, one
should be aware of its side effects (which are rarely serious), its frequent drug interactions
(which also extend to drugs used for COVID-19 treatment) and the most appropriate
administration route (vaping may be effective but sometimes also dangerous). Clearly,
further clinical studies are necessary to confirm the beneficial observations made for small
numbers of patients, to clarify conflicting results and to broaden our understanding of the
true therapeutic potential of CBD against COVID-19.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006

7/22/4/1986/s1 [188–279].

Author Contributions: Conceptualization: B.M., E.S.; data acquisition: B.M., M.B.-K., A.K., E.S.;

writing—original draft preparation: B.M., M.B.-K., A.K., E.S.; writing—review and editing: B.M.,

M.B.-K., E.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Medical University of Białystok (Poland) grants number

N/ST/ZB/16/003/2213, N/ST/ZB/17/001/2213 and N/ST/ZB/17/002/2213.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is

not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

5-HT1A-R serotonin receptor type 1A

A1A-R adenosine receptor type A1A

A2A-R adenosine receptor type A2A

ACE2 angiotensin-converting enzyme 2

ACE-I angiotensin-converting-enzyme inhibitors

AGEs advanced glycation endproducts

ALI acute lung injury

ALT alanine transaminase

Ang II angiotensin II

Ang 1–7 angiotensin 1–7

AST aspartate transaminase

ARDS acute respiratory distress syndrome

BALF bronchoalveolar lavage fluid

CB-R cannabinoid receptor

CB1-R cannabinoid CB1 receptor

CB2-R cannabinoid CB2 receptor

CBD cannabidiol

CBF cerebral blood flow

CCL2, CCL5 C-C motif chemokine ligand 2 and 5

CINV chemotherapy-induced nausea and vomiting

COPD chronic obstructive pulmonary disease

COVID-19 coronavirus disease 2019

COX-2 cyclooxygenase 2

CRP C-reactive protein

CVD cardiovascular disease
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d day(s)

DOCA deoxycorticosterone acetate

DPCPX 8-cyclopentyl-1,3-dipropylxanthine

EEG electroencephalography

EP4 prostanoid EP4 receptor

FAAH fatty acid amide hydrolase

GCSF granulocyte colony stimulating factor

HDL high density lipoprotein

HR heart rate

i.a. intra-arterially

IFN-γ interferon γ

IL-n interleukin n,e.g., IL-1, interleukin-1

IL-1β interleukin-1ß

iNOS inducible nitric oxide synthase

IP prostacyclin receptor

i.p. intraperitoneally

i.v. intravenously

LAD left anterior descending artery

LCx left circumflex coronary artery

LDL low-density lipoprotein

LPS lipopolysaccharide

MCA middle cerebral artery

MCP-1 monocyte chemoattractant protein-1

MERS middle east respiratory syndrome

MIP-2 macrophage inflammatory protein-2

MPO myeloperoxidase

MS multiple sclerosis

NF-κB nuclear factor κB

NO nitric oxide

NRP1 protein neuropilin-1

PAI-1 plasminogen activator inhibitor-1

pCO2 partial pressure of carbon dioxide

p.o. per os, orally

pO2 partial pressure of oxygen

poly(I:C) polyriboinosinic:polyribocytidylic acid

PPARγ peroxisome proliferator-activated receptor type γ

SARS severe acute respiratory syndrome

SARS-CoV-2 severe acute respiratory syndrome coronavirus 2

SHR spontaneously hypertensive rats

STZ streptozotocin

TGs triglycerides

THC ∆
9-tetrahydrocannabinol

TLC total lung capacity

TMEV Theiler’s murine encephalomyelitis virus-induced

demyelinating disease

TMPRSS2 transmembrane serine protease 2

TNF-α tumor necrosis factor α

t-PA tissue plasminogen activator

TRP transient receptor potential

TRPV1 transient receptor potential vanilloid subfamily member 1

UVA ultraviolet A

VCAM-1 vascular cell adhesion molecule-1
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