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Abstract
Males and females show different patterns of cannabis use and related psychosocial outcomes. However, the
neuroanatomical substrates underlying such differences are poorly understood. The aim of this study was to map sex
differences in the neurobiology (as indexed by brain volumes) of dependent and recreational cannabis use. We
compared the volume of a priori regions of interest (i.e., amygdala, hippocampus, nucleus accumbens, insula,
orbitofrontal cortex (OFC), anterior cingulate cortex and cerebellum) between 129 regular cannabis users (of whom 70
were recreational users and 59 cannabis dependent) and 114 controls recruited from the ENIGMA Addiction Working
Group, accounting for intracranial volume, age, IQ, and alcohol and tobacco use. Dependent cannabis users,
particularly females, had (marginally significant) smaller volumes of the lateral OFC and cerebellar white matter than
recreational users and controls. In dependent (but not recreational) cannabis users, there was a significant association
between female sex and smaller volumes of the cerebellar white matter and OFC. Volume of the OFC was also
predicted by monthly standard drinks. No significant effects emerged the other brain regions of interest. Our findings
warrant future multimodal studies that examine if sex and cannabis dependence are specific key drivers of
neurobiological alterations in cannabis users. This, in turn, could help to identify neural pathways specifically involved
in vulnerable cannabis users (e.g., females with cannabis dependence) and inform individually tailored neurobiological
targets for treatment.

Introduction
Cannabis is the most widely used illicit substance on the

planet and is the first drug of concern in treatment ser-
vices nearly worldwide1. Sex differences are apparent in
many aspects of cannabis use and dependence. For
instance, males represent the majority of cannabis users1,2

and are more likely to become dependent2 but females

progress more rapidly from recreational use to depen-
dence and relapse more often2–4. Such differences have
been partially attributed to sex-dependent underlying
neurobiology5,6. For instance, the distribution and affinity
of cannabinoid type 1 receptors (CB1Rs), which bind
psychoactive compounds of cannabis (e.g., tetra-
hydrocannabinol (THC)), are affected by sex hormones
and vary between males and females5,6. Thus, there may
be sex differences in the neurobiological correlates of
cannabis use.
Structural neuroimaging evidence in cannabis users

shows mixed evidence for altered brain volumes in areas
relevant to addiction-related cognitive processes (e.g., stress,
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learning, disinhibition)7 and that are high in CB1Rs8 (e.g.,
amygdala, hippocampus, prefrontal cortex (PFC), including
the orbitofrontal cortex (OFC) and the anterior cingulate
cortex (ACC), cerebellum and striatum9–11). A recent
mega-analysis reported no significant volume differences
between cannabis users and controls in these regions12.
However, the literature to date9,12 has failed to account for
putative moderators of volume alterations in cannabis users
such as cannabis dependence status, which neuroscientific
theories of addiction ascribe to profound neuroadapta-
tions13, and confounders associated with cannabis use
including tobacco and alcohol exposure.
The role of sex differences in volume alterations in

cannabis users has also been under-investigated14.
Emerging cannabis-by-sex effects were shown in the
amygdala (i.e., female users > female controls)15, the PFC
(i.e., female users > female controls and male users < male
controls)16 and the OFC (i.e., female dependent users <
female controls)17 but these were not replicated18 and
were not found in other brain regions (e.g., cerebellum19,
striatum20 parietal cortex18). Therefore, the differential
effect of cannabis on the neuroanatomy of males and
females remains elusive. Most published studies to date
(i.e., 19 out of 30) have a male sampling bias, did not
examine group-by-sex interactions21 or failed to account
for drivers of neuroanatomical alterations (e.g., cannabis
dependence, alcohol and tobacco use11,12,22,23).
Here we aimed to address these limitations by investi-

gating brain volume differences associated with recreational
and dependent cannabis use and their interaction with sex.
We compared brain volumes in 129 regular cannabis users
(of whom 59 were cannabis dependent) and 114 controls
recruited from the ENIGMA Addiction Working Group
while accounting for exposure to substances other than
cannabis (i.e., alcohol and tobacco). We focused on a priori
regions of interest (ROIs) that have been examined by at
least three studies9,24 and showed volumetric differences
(although not unanimously) between cannabis users and
controls i.e., amygdala, hippocampus, nucleus accumbens
(NAcc), insula, OFC, ACC and the cerebellum20,24–28. Also,
the ROIs were selected for their high in CB1cannabinoid
receptors based on autographic evidence CBR1s8,29 and for
their key role in prominent neuroscientific theories of
addiction30,31.
Based on previous structural MRI studies, we expected

that (i) cannabis users (particularly dependent users)
would show smaller volumes in some ROIs (i.e., amyg-
dala, hippocampus, insula, OFC, ACC, cerebellar white
matter)24–26,32 and larger volumes in other ROIs (i.e.,
NAcc, cerebellar grey matter)20,27,28 and (ii) there would
be group-by-sex interactions within the OFC and the
amygdala15,17.We also explored whether sex differences
would emerge in other a-priori ROIs where these effects
have not been examined (or found) so far18–20. Last, we

explored separately in recreational and dependent users,
if sex and substance use parameters (i.e., cannabis
dosage, age of cannabis use onset, monthly standard
drinks and monthly cigarettes) predicted brain volume
of those ROIs that demonstrated significant group-by-
sex interactions, after accounting for intracranial volume
(ICV), age and IQ.

Materials and methods
This study was pre-registered on the Open Science

Framework (https://osf.io/spq2w).
MRI and behavioural data were obtained from seven

research sites in accordance with the Declaration of
Helsinki. All sites had obtained written informed consent
from all participants. After primary data cleaning, three
sites were excluded as they were missing information for
monthly standard drinks and monthly cigarettes. Inclu-
sion and exclusion criteria and key imaging, clinical and
substance use assessment measures for the remaining four
sites27,33–35 are shown in Supplementary Tables S1 and
S2. Briefly, participants were excluded if they had psy-
chiatric comorbidities; lifetime substance use (other than
cannabis) greater than 5-to-100 times; MR contra-
indications or current use of psychotropic medications.
We further excluded cannabis users who had abstained
from cannabis for longer than 30 days (n= 15), and
participants with significant MR image artefacts that
undermined the validity of brain measures (n= 5) and
missing IQ (n= 3), monthly standard drinks (n= 21) or
monthly cigarettes (n= 3) data that were required as
covariates for the analyses. The final sample included 243
participants, of whom 129 were regular cannabis users as
defined at each site (38 females, mean age 27.54 ± 10.12),
and 114 participants were non-cannabis using controls
(33 females, mean age 26.19 ± 9.10).

Measures
Participants’ demographic and substance use character-

istics were assessed using semi-structured interviews at each
site. These interviews assessed age, sex, IQ, monthly stan-
dard drinks, monthly cigarettes and cannabis use parameters
(i.e., dosage, age at onset of use and dependence status). We
standardised quantities across individuals by converting
cannabis dosage (reported by participants in many forms
shown in Supplementary Table S1) into standardised
monthly ‘cones’ (defined here https://cannabissupport.com.
au/media/1593/timeline-followback.pdf). Distributions of
monthly standard drinks, cigarettes and cones were posi-
tively skewed, so were squared-root transformed prior to
statistical analyses. Cannabis dependence status was avail-
able from three of the four sites and was used to segregate a
three-site subsample (n= 206) into 59 dependent users (17
were females) with a mean age of 25 years, 49 recreational
users (of which 20 were females) with a mean age of 27
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years, and 98 non-cannabis using controls (including 33
females), with a mean age of 25 years. Cannabis dependence
was determined using validated instruments with diagnostic
cut-offs (i.e., > 3 for Mini Neuropsychiatry International
Interview (MINI)36 and > 4 for the Severity of Dependence
Scale (SDS)37).

Structural MRI data acquisition and processing
Each site acquired structural T1-weighted MRI brain data

which were prepared for analysis using FreeSurferv.5.3.0
(http://surfer.nmr.mgh.harvard.edu/), a fully automated
MRI processing pipeline that identifies seven bilateral sub-
cortical and 34 bilateral cortical ROIs38,39. Briefly, after
automated Talairach transformation and removal of non-
brain tissue and skull40 the T1-weighted images were used
to segment brain tissues and to estimate the grey
matter–white matter interface, which was used as the
starting point for the 3D reconstruction of the cortical
surfaces. Then, each subject’s cortical model was parcelled
into ROIs according to the Desikan–Killiany atlas39 and
surface-based cortical volumes were estimated at the ROI
level for all participants. Following all automated processing
and parcellation procedures, FreeSurfer was again utilized
to extract absolute segmented volumes of subcortical
regions. All FreeSurfer output underwent quality control at
each site, according to ENIGMA standardized protocols
(http://enigma.ini.usc.edu/protocols/imaging-protocols/),
which included outlier detection and visual inspection of all
data. Analyses were performed on a total of 10 bilateral
ROIs i.e., hippocampus, amygdala, NAcc, insula, medial
OFC, lateral OFC, rostral ACC, caudal ACC, cerebellum
grey matter, and cerebellum white matter. Left and right
hemispheres were considered separately for each ROI.

Statistical analyses
Chi-squared tests assessed differences in sex distribu-

tions between groups (i.e., recreational cannabis users,
dependent cannabis users, controls).
A series of mixed-effect models were run to examine

group, sex and group-by-sex differences for demographic
and substance use characteristics, and brain volumes. This
technique statistically accommodates dependency between
observations in a nested design (i.e., participants within
sites)41. Site was treated as a random effect to account for
the systematic site-level variation in the dependent vari-
ables expected to occur from differences in scanners,
protocols and assessment tools.

ROI volumes in cannabis users and controls of the full
sample (n= 243; 4 sites)
In the full sample, we examined the impact of factors

including group (controls, cannabis users [encapsulating
both recreational and dependent users]), sex (male,
female) and group-by-sex, on ROI volumes as dependent

variables, controlling for ICV, age, IQ, monthly standard
drinks, and monthly cigarettes. Group-by-sex interaction
effects with a nominal significance level of p(uncorrected)
< 0.05 were interrogated using pairwise comparisons.

ROI volumes in dependent cannabis users, recreational users
and controls of the subsample with data on cannabis
dependence status (n= 206; 3 sites)
We replicated the analysis above in the three-site sub-

sample where cannabis dependence status was available,
using group (controls, dependent cannabis users, recrea-
tional cannabis users), sex (male, female) and group-by-
sex as factors, ROI volumes as dependent variables, and
ICV, age, IQ, monthly standard drinks and monthly
cigarettes as confounding variables. We also controlled
for monthly cannabis dosage (i.e., “cones”) as these were
significantly higher in dependent cannabis users than
recreational users. Group-by-sex interaction effects with a
nominal significance level of p(uncorrected) < 0.05 were
interrogated using pairwise comparisons.

Exploratory associations between ROI volumes and sub-
stance use levels in dependent and recreational cannabis
users from the three-site subsample
Exploratory analyses were run separately in dependent

(n= 59) and recreational cannabis users (n= 49) of the
three-site subsample where information on cannabis
dependence status was available and for ROIs that were
significantly affected by group-by-sex interactions. Spe-
cifically, we examined if ROIs volume was predicted by
sex and substance use levels (i.e., age at onset of cannabis
use, monthly cannabis cones, monthly standard drinks
and monthly cigarettes) controlling for age, IQ and ICV.
All volumetric results were corrected for multiple

comparisons using a False Discovery Rate (FDR) corrected
statistical threshold of p(FDR) < 0.0542. Effect sizes were
estimated for the significant p(uncorrected) < 0.05 group
and group-by-sex effects using Cohen’s d and based on
the marginal means predicted by the model. All analyses
were run with STATA 14 (StataCorp; 2015).

Results
Samples characteristics
Table 1 shows demographic and substance use char-

acteristics and brain volumes of the original sample
(4 sites). Cannabis users (n= 129) versus controls (n=
114) did not differ in sex distribution, age, IQ or monthly
standard drinks, but smoked more monthly cigarettes.
These variables were matched between recreational can-
nabis users (n= 49), dependent cannabis users (n= 59)
and controls (n= 98) of the subsample with information
on cannabis dependence status (three sites). However,
dependent cannabis users compared to recreational users
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were, on average, older and smoked more cannabis cones
per month (Supplementary Table S3).

Volumetric findings
Regular cannabis users versus controls from the full sample
(4 sites)
In the full sample, regular cannabis users (including

both dependent and recreational users) compared to
controls had smaller volumes in both the right medial
OFC (β= −269.28, p(uncorrected) = 0.048) and in the
right lateral OFC (β= −404.94, p(uncorrected)= 0.031).
Also, a group-by-sex interaction was observed in the right
cerebellar white matter (β= 1119.24, p(uncorrected)=
0.045). Post-hoc pairwise comparisons showed that
female cannabis users had, on average, smaller volumes
than male cannabis users. These group and group-by-sex
interaction effects had a small effect size and did not
survive FDR correction (Table 1).

Dependent cannabis users versus recreational users and
controls from the three-site subsample
Volumetric findings from the three-site subsample are

shown in Table 2 and Fig. 1. Dependent cannabis users
had smaller volumes of the right cerebellar white matter
and right lateral OFC compared to both recreational users
(β= −1269.72, p(uncorrected)= 0.42 and β= −564.93,
p(uncorrected)= 0.025) and controls (β= −1564.76,
p(uncorrected)= 0.24 and β= −702.11, p(uncorrected)=
0.012).
There was also a significant group-by-sex effect on the

volumes of the cerebellar white matter (left: β= 1507.86,
p(uncorrected)= 0.12; right: β= 1786.54, p(uncorrected)
= 0.006) and the right lateral OFC (β= 575.33, p(uncor-
rected)= 0.027). Particularly, pairwise analyses demon-
strated (i) smaller left cerebellar white matter in female
dependent cannabis users compared to male recreational
users and male dependent users and (ii) smaller right
cerebellar white matter and right lateral OFC volumes in
female dependent cannabis users relative to recreational
users and controls of both sexes.

Association between cannabis, alcohol and tobacco use
levels and ROI volumes separately in cannabis users with
and without dependence from the three-site subsample
As shown in Table 3, smaller cerebellar white matter

volumes in dependent cannabis users were significantly
predicted by female sex (i.e., male = 1; female = 0) in both
left (β= 1128.06, p(FDR)= 0.023) and right (β= 1352.56,
p(FDR)= 0.011) hemisphere while smaller right lateral
OFC volumes were significantly predicted by both female
sex (β= 505.68, p(FDR)= 0.028) and more monthly
standard drinks (β=−111.54, p(FDR)= 0.003). In
recreational cannabis users, more monthly standard
drinks predicted smaller right cerebellar white matter

volumes (β=−254.22, p(uncorrected)= 0.033), but this
effect did not survive FDR correction. No other predictor
was significantly associated with cerebellum white matter
and OFC volumes.

Discussion
Summary of the results
The results of this multi-site MRI study partially con-

firmed our hypotheses. Specifically, group and group-by-
sex effects emerged in the lateral OFC and the cerebellar
white matter of cannabis users versus controls. These
effects had small-to-moderate effect sizes and did not
survive FDR correction. Yet, cannabis users versus con-
trols did not show volumetric differences in the amygdala,
hippocampus, insula, ACC, NAcc and cerebellar grey
matter. Last, in recreational and dependent cannabis
users, we found that lateral OFC and cerebellar white
matter volumes were predicted by sex and alcohol dosage,
but not cannabis use measures.

Sex and cannabis dependence related differences between
regular cannabis users and controls
We showed that in cannabis users, being female and

dependent on cannabis was associated with smaller right
lateral OFC and cerebellar white matter volumes.
Our report of smaller cerebellar white matter and OFC

volumes in cannabis users versus controls is consistent with
previous reports9,10 and with neuroscientific theories of
addiction that implicate these regions in dependent, habitual
substance use and related increased salience to substance-
related stimuli, disinhibition, stress and craving13,43,44.
However, to date it remains to be clarified whether such

alterations are the results of neuroadaptations associated
with the development of addiction45 or due to neuro-
toxicity related to chronic exposure to cannabis46.
A key novel finding is that there was a significant

interaction between female sex and cannabis dependence
on cerebellar white matter and lateral OFC volumes
suggesting that sex may moderate brain volume differ-
ences associated with cannabis dependence. To our
knowledge, we are the first to report a group-by-sex effect
in the cerebellar white matter of people with cannabis
dependence. Our findings are in line with those from
previous studies where sex differences were not exam-
ined22,26 and corroborate recent models of addiction that
have reconsidered the cerebellum as a key region that play
a modulating role between motor, reward, motivation and
cognitive control systems via its functional connections
with the corticostriatal-limbuic circuitry31,43.
Interestingly, we found that, within the group of

dependent users, being female predicted volume reduc-
tions of those regions (i.e., lateral OFC, cerebellar white
matter), over and above the effect of cannabis dosage, age
of cannabis use onset and monthly standard drinks and
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monthly cigarette use. Thus, female sex may represent a
vulnerability factor to develop volumetric alterations in
this group.
The mechanisms behind smaller volumes of the cere-

bellum and OFC in female dependent cannabis users
remain to be clarified. Pre-existing neurostructural sex
differences in these regions have been shown in normative
samples (e.g., smaller volume in males versus females47,48)
and might represent a neurobiological vulnerability pre-
dating cannabis use49,50. Yet, sex differences have been
reported within the endocannabinoid system5,51. For
example, chronic cannabinoid exposure in rats leads to a
more marked downregulation and desensitization of
CB1Rs within the cerebellum and the OFC51,52. Notably,
CB1Rs receptors are widely expressed on both neurons
and glial cells (e.g., oligodendrocytes and oligodendroglial
cells)53,54. Thus, the downregulation of cannabinoid
receptors with long-term cannabis exposure might also
suppress glial cells function54,55 and thereby alter white
matter structures26. Interestingly, emerging evidence
shows that microglial activation underlies cerebellar def-
icits produced by repeated cannabis exposure56. Sex dif-
ferences in the endocannabinoid system have been
ascribed to females experiencing stronger cannabis crav-
ing, withdrawal symptoms2,57, and psychoactive effects of
the cannabinoid THC that confers addiction liability17,58,
and may contribute to a faster escalation from regular use

to dependence noted in female cannabis users2–4. Inter-
estingly, preliminary evidence in a separate study of young
adults showed that smaller OFC volume predicted can-
nabis use, suggesting that structural abnormalities in the
OFC might contribute to risk for cannabis exposure59.
Moreover, a significant association emerged between
cerebellar white matter integrity and self-reported craving
in people at risk of cannabis use disorders 60.
Longitudinal neuroimaging studies are required to

extend these findings while accounting for sex differences
predating/following cannabis dependence and in the
transition from recreational to dependent cannabis use.
Even so, the cross-sectional nature of this study did not
allow us to determine causality versus pre-existing sex-
related brain differences that may predict future depen-
dent versus recreational cannabis use. Further long-
itudinal studies are needed to disentangle this issue.

Associations between ROI volumes and alcohol standard
drinks in recreational and dependent cannabis users
Of note, in dependent cannabis users, smaller OFC

volumes were also associated with monthly standard drinks
which is in line with evidence from structural MRI studies
in alcohol users12,61,62. As such, one could speculate that
alcohol use may have driven OFC reductions in dependent
cannabis users compared to recreational users and con-
trols. However, all between-group analyses accounted for
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Fig. 1 Predicted cerebellar white matter (WM) and right lateral orbitofrontal cortex (OFC) volumes in cannabis users (CB) with and without
dependence and controls. Vertical and horizontal bars represent 95% confidence interval and group-by-sex effects, respectively.
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monthly standard drinks and other important covariates
(i.e., ICV, IQ, age, IQ, monthly cigarettes). Yet, cannabis
users (with and without dependence) and controls were
matched by the number of monthly standard drinks (Table
1 and Table S3). Alternatively, it may be possible that
cannabis dependent users are more vulnerable to alcohol
exposure than non-dependent users. Future studies com-
paring recreational and dependent users with and without
alcohol co-use may help disentangle this issue.
Similarly, we found a marginally significant association

between monthly standard drinks and smaller cerebellar
white matter volumes in recreational cannabis users. This
is in line with previous evidence from structural MRI stu-
dies showing cerebellar white matter changes in alcohol
users 43 and underlines the need to systematically account
for entrenched alcohol exposure in cannabis using samples.

Negative findings
We did not find volumetric alterations within distinct

ROIs in cannabis users compared to controls, specifically
in the amygdala, hippocampus, insula, NAcc and ACC.

This is partially in line with prior work that found both
presence19,20,24,25,32 and absence20,63 of alterations of
these ROIs in cannabis users compared to controls. Our
work extends previous negative findings in recreational
and dependent cannabis users within both sexes, after
controlling for several key confounders (ICV, age, IQ,
alcohol and tobacco use). The inconsistently reported
volumetric differences in (recreational and dependent)
cannabis users suggest that neuroanatomical alterations
of ROIs that are implicated in neuroscientific theories of
addiction13,30, may not be a core feature of cannabis use
neurobiology.
Moreover, in contrast with prior work9,24,64, ROI

volumes in our sample of cannabis users were not pre-
dicted by age at cannabis use onset or by cannabis dosage
(i.e., monthly cannabis cones). One difference between
our study and prior reports (in which specific variables
significantly predict brain volumes) is that most prior
studies, unlike this study, did not account for multiple
relevant variables including sex, cannabis dependence, IQ
and alcohol and tobacco use. Our findings emphasize a

Table 3 Associations between regional brain volumes and substance use levels separately in cannabis users with and
without dependence (three-site subsample).

Dependent CB (n= 59) Recreational CB (n= 49)

β (95% CI) p β (95% CI) p

Brain volumes (mm3)

OFC

lateral R Sexa 505.68 53.45, 957.91 0.028* −197.09 −770.26, 376.07 0.500

Cannabis use onset, yrs 73.57 −28.24, 175.37 0.157 4.65 108.99, 118.29 0.936

Cannabis dosage, cones/mo −0.76 −32.92, 31.40 0.963 12.45 −24.65, 49.56 0.511

Cigarettes/mo 9.02 −13.28, 31.33 0.428 6.21 −25.84, 38.27 0.704

Standard drinks/mo −111.54 −185.14, −37.94 0.003** −42.03 −122.10, 38.04 0.304

Cerebellum

WM L Sexa 1128.06 154.65, 2101.48 0.023* 578.83 −906.20, 2063.86 0.445

Cannabis use onset, years −20.14 −230.05, 189.77 0.851 88.65 −204.05, 381.36 0.553

Cannabis dosage, cones/mo −16.06 −85.10, 52.99 0.649 −8.73 −102.90, 85.44 0.856

Cigarettes/mo 22.23 −23.79, 68.25 0.344 5.56 −76.04, 87.16 0.894

Standard drinks/mo −14.08 −138.04, 166.21 0.856 −118.14 −321.66, 85.37 0.255

R Sexa 1352.56 303.86, 2401.25 0.011* 1396.28 −303.28, 3095.85 0.107

Cannabis use onset, years 9.39 −215.40, 234.19 0.935 61.40 −274.05, 396.84 0.720

Cannabis dosage, cones/mo 9.90 −64.49, 84.28 0.794 36.48 −71.84, 144.81 0.509

Cigarettes/mo 4.83 −44.46, 54.11 0.848 3.12 −90.66, 96.89 0.948

Standard drinks/mo 40.24 −122.73, 203.20 0.628 −254.22 −488.24, −20.20 0.033*

Note: only ROIs that demonstrated significant group-by-sex effects were included in the analysis.
CB cannabis users, CI confidence interval, L left, OFC orbitofrontal cortex, R right, WM white matter.
aMale =1; Female = 0.
*p(unc) < 0.05, **p(unc) < 0.01, p(FDR) < 0.05.
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need to rethink the role of patterns of cannabis use versus
dependence as well as variables associated with cannabis
exposure65,66, as drivers of neuroanatomical differences
between cannabis users and controls.

Limitations
Our findings should be considered with caution. First,

the size of the reported effects was small-to-medium and
suggests that only a sub-set of cannabis users show
smaller volumes (e.g., those with a longer history of
cannabis use or greater severity of cannabis dependence).
Replication studies in larger samples are required to
identify the characteristics that confer vulnerability to
develop brain alterations. Second, the inter-study varia-
bility in MRI (e.g., MR scanner magnetic field strength,
manufacturer, acquisition parameters) and behavioural
testing protocols may have confounded our study results.
We mitigated this issue by using standardized high-
quality MR quality check protocols67,68 and a multi-level
statistical approach that accounts for error due to sys-
tematic differences between distinct study samples.
Similarly, our findings on group and group-by-sex dif-
ferences may have been confounded by the fact that
number of monthly cigarettes was greater in cannabis
users compared to controls. However, we controlled for
differences in monthly cigarettes in all analyses. As such,
we are confident that we accounted for the impact of this
variable in estimating the result. Yet, future studies in
groups carefully matched on tobacco use are needed to
unpack the concurrent impact of cannabis and tobacco
use on the brain of cannabis using samples with entren-
ched tobacco use. Third, our aggregated sample included
cohorts that were included in previous work, so our
findings may mirror already published studies that com-
pared (recreational and dependent) cannabis users to
controls17,26,27. However, we were the first to concurrently
examine the role of cannabis dependence status and sex
differences on specific ROIs chosen based on their rele-
vance for theories of addiction and their consistent
alterations in regular cannabis users; also, studies that
were published using samples from our aggregated sample
were not used to compare our findings to already
published work.
Last, we could not account for additional variables that

may affect neuroanatomy in male and female cannabis
users, including sex hormones51,69, cannabis use history
and dependence severity22, craving70 and withdrawal57

motives to use cannabis (e.g., coping with stress,
habits)71,72; cannabinoid compounds such as THC and
cannabidiol (CBD), which might exacerbate or mitigate
brain alterations23; stress level and psychiatric symptoms
(e.g., anxiety, depression)73,74 and history of trauma75–77.
This data was not available from this aggregated dataset
and may reflect the status of the research to date, whereby

distinct studies use heterogeneous measures of drug use,
cognitive and psychological function. This situation may
warrant the development of an expert-driven consensus
on a minimum set of measures to map the brain, mental
health and cognitive correlates of cannabis use. Such a
consensus would be instrumental to help integrate
research study findings and to advance the current
understanding of the pathophysiology of cannabis use in
men and women.

Conclusions
In conclusion, we found that cannabis users compared

to controls had smaller volumes in selected ROIs (i.e.,
cerebellar white matter and right lateral OFC). Smaller
ROI volumes were predicted by female sex and presence
of cannabis dependence. These results point to a role of
cannabis dependence and female sex as drivers of subtle
and regionally localized volumetric differences in
cannabis users.
As cannabis becomes increasingly accessible to both

men and women, more work is necessary to map the
mechanisms underlying sex differences in trajectories in
and out of cannabis dependence and related psychosocial
problems. This, in turn, will help inform future research
on sex-specific pharmacological and behavioural inter-
ventions for male and females regular and dependent
cannabis users.
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