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Biphasic effects of THC in memory and cognition
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Abstract

A generally undesired effect of cannabis smoking is a reversible disruption of

short-term memory induced by delta-9-tetrahydrocannabinol (THC), the primary

psychoactive component of cannabis. However, this paradigm has been recently

challenged by a group of scientists who have shown that THC is also able to

improve neurological function in old animals when chronically administered at

low concentrations. Moreover, recent studies demonstrated that THC paradoxi-

cally promotes hippocampal neurogenesis, prevents neurodegenerative processes

occurring in animal models of Alzheimer’s disease, protects from inflammation-

induced cognitive damage and restores memory and cognitive function in old

mice. With the aim to reconcile these seemingly contradictory facts, this work

will show that such paradox can be explained within the framework of hormesis,

defined as a biphasic dose-response.
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1 | INTRODUCTION

Alzheimer’s disease (AD) is characterized by progressive

deterioration of cognitive functions and oxidative stress,1

with biochemical alterations consisting in the accumulation

of amyloid-b (Ab) protein in the form of senile plaques2

and intracellular neurofibrillary tangles (associated with

hyperphosphorylated tau protein and neuronal cell deple-

tion).3-6 Although familial and sporadic AD differs in their

cause, the progression of the disease from this point

onwards appears to be the same. These alterations induce

neuroinflammation and oxidative stress, which creates a

neurotoxic environment that potentiates neurodegeneration

and eventually leads to cognitive decline.7,8 Also, Ab-

induced neurodegeneration elevates glutamate levels in the

cerebral spinal fluid of patients with AD,9 and cholinergic

neurons are lost in brain areas relevant for memory pro-

cessing (and accompanied by a decrease in acetyl-

choline).10

In normal conditions, memory, learning and behaviour

depend on the proper function of the excitatory glutamate

N-methyl-D-aspartate-receptor (NMDAR) and a-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid receptor

(AMPAR) and underlying mechanisms of synaptic plastic-

ity.11-13 However, the dysregulation of intracellular Ca2+

homoeostasis14 and excessive activation of the N-methyl

D-aspartate (NMDA) subtype of the glutamate receptor,

leading to excitotoxicity, are features of the AD brain.15

All of the clinical mutations in the presenilin genes (PS1/

PS2) that have been linked with the inherited form of AD

disrupt calcium signalling,14 which may contribute to sub-

sequent neurodegeneration and memory impairments.16

2 | THC: FRIEND OR FOE OF THE
HIPPOCAMPUS?

Analysis of the distribution of CB1 receptors shows that

the hippocampus contains a high density of CB1 recep-

tors,17-21 and relatively large amounts of the endocannabi-

noids anandamide22,23 and 2-AG.23 Immunocytochemical

studies have revealed that FAAH (fatty acid amide
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hydrolase), the enzyme responsible for anandamide catabo-

lism24,25 and monoglyceride lipase, an enzyme that is

believed to play a role in the hydrolysis of 2-AG26,27 are

significantly present within the hippocampus. Collectively,

these findings demonstrate that the hippocampus is an

important locus for cannabinoid effects on learning and

memory.28 The cellular and molecular mechanisms under-

lying THC’s amnesic effect have been revealed in an ele-

gant series of experiments by Puighermanal and

colleagues.29

A generally undesired effect of cannabis smoking is a

reversible disruption of short-term memory30,31 induced

by delta-9-tetrahydrocannabinol (THC), the primary psy-

choactive component of cannabis. In addition, both acute

and chronic exposure to cannabis are associated with

dose-related cognitive impairments, most consistently in

attention, working memory, verbal learning and memory

functions in animals32,33 and in humans.34,35 In addition

to reduced learning, heavy cannabis use is also associated

with a decreased mental flexibility, increased perseveration

and reduced ability to sustain attention.36 Several lines of

evidence suggest that the hippocampus, an area long

implicated with learning processes, plays a major role in

the mediating both the effects of exogenous cannabinoids

on memory and endocannabinoid modulation of mem-

ory.28

Recent studies have, however, shown that THC para-

doxically promotes hippocampal neurogenesis,37,38 prevents

neurodegenerative processes occurring in animal models of

AD,39-41 protects from inflammation-induced cognitive

damage42,43 and restores memory and cognitive function in

old mice.44,45 With the aim to reconcile these seemingly

contradictory facts, this work will show that such paradox

can be explained within the framework of hormesis,

defined as a biphasic dose-response.

3 | HORMESIS HISTORICAL
BACKGROUND

For several decades, it was believed that the dosage of a

drug followed a linear pattern (at higher dose greater

effect).46 However, in subsequent years, many studies have

shown an inverse response to different doses of a substance

in the same individual, completely ruling out linearity and

threshold response models.47-49

Hormesis is a dose-response phenomenon, characterized

by a low-dose stimulation and a high-dose inhibition. The

term hormesis was first introduced into the scientific litera-

ture in 1943 by Chester Southam and John Ehrlich,50

mycology researchers at the University of Idaho, who

reported that low concentrations of extracts from the red

cedar tree enhanced the metabolism of a number of fungal

species. The term hormesis was derived from the Greek

meaning to excite. Prior to the report of Southam and Ehr-

lich,50 there was a substantial history of reports in the bio-

logical literature also demonstrating a similar biphasic

dose-response.

One of the first scientists to mention the biphasic effect

was Paracelsus (1493-1541), who is recognized for his

comments regarding the importance of the dose of chemi-

cals in determining whether they are therapeutic or toxic.51

He stated: “Alle Ding sind Gift, und nichts ohn Gift; allein

die Dosis macht, daß ein Ding kein Gift ist,” which can lit-

erally be translated as “All things are poison and nothing is

without poison, only the dose allows something not to be

poison.” From this statement, the perception of the benefi-

cial or harmful effects of chemical compounds has chan-

ged.51

After Paracelsus, other scientists have provided impor-

tant data about this effect. As Tischner52 points out, the

opposite effects of the stimuli were already described by

Hippocrates. The phenomenon is mentioned again in the

eighteenth century, when the Austrian doctor, Gerard van

Swieten (1700-1772) found that small doses of poppy

juice cause the most animated sensations, while higher

doses cause sleep and overdoses cause stroke.53 In 1795,

Hufeland writes in his treatise Ideen €uber Pathologie

(Ideas on pathology) that the intensity of a stimulus

makes a significant difference in the intentional response,

that is, that the same stimulus can cause different effects

if applied with degrees of intensity [cited in reference

54].

In 1854, Rudolf Virchow55 reported that the movement

of the bronchial epithelium cilia in the postmortem mucosa

differed depending on the concentrations of sodium and

potassium hydroxide. While at low concentrations cilia

movement increased, a decrease in this movement was

observed with high concentrations.56 Three decades later,

Hugo Schulz observed that the application of low doses of

disinfectants increased the metabolism of yeasts, whereas

in high doses, the metabolism decreased.57 Although he

initially dismissed the theory as the result of an experimen-

tal error, his repeated studies encouraged him to postulate

the Arndt-Schulz law in association with Rudolf Arndt.

This law states: “The physiological action of a cell is

increased or decreased in relation to the intensity of the

stimulus: small doses stimulate, moderate doses inhibit, and

large doses kill”.57

Another clear example of this biphasic effect is gluta-

mate. This neurotransmitter plays a fundamental role in the

functioning of the neural circuits involved in sensory pro-

cessing, in learning, memory and in emotions. Low gluta-

mate levels also activate adaptive stress responses that

include the production of proteins that help to protect the

neurons against more-severe stress. However, abnormally
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high levels of glutamate at synapses can cause the degener-

ation and death of neurons.58

The hormetic effect is increasingly accepted, although

there are some authors as Thayer et al,59 who contended that

little is known about the mechanisms underlying hormesis.

Further, they argued that, in the absence of comprehensive

mechanistic foundations, hormetic-like dose-response rela-

tionships are meaningless. It is incorrect to affirm that little is

known about hormetic mechanisms. In fact, the case is just

the opposite. As early as 2001, a series of articles was pub-

lished on a range of endogenous agonists: prostaglandins,60

nitric oxide,61 estrogens and related compounds,62 andro-

gens,63 adrenergic agonists,64 adenosine,65 serotonin,66,67

dopamine68 and opiates69 that display hormetic biphasic

dose-response. These articles documented that the mecha-

nisms of biphasic dose-response were clearly established to

the level of receptor and, in a number of cases, to further

levels of molecular detail. Later assessments have identified

dozens of hormetic mechanisms for immune responses70 and

for responses in tumour cell lines.71 More recently, Cal-

abrese72 reported approximately 400 specific hormetic mech-

anisms across a broad range of biological models, endpoints

and agents, with the quantitative features of the hormetic

response being independent of mechanism.

4 | BIPHASIC EFFECTS OF THC
AND ANANDAMIDE

The knowledge that cannabinoids display biphasic effects

is not new; it was reported more than 40 years ago.73 Con-

temporary reports include excitatory and depressant effects

of THC on cortical evoked responses (over a dose range

of about 0.5-3.5 mg/kg)74 and on muscimol-induced cir-

cling behaviour (after intracerebral injections of ∆9-THC

(1-10 lg),75 and a biphasic anxiolytic/anxiogenic effect

induced by 4 or 100 lg/kg, respectively, of the synthetic

cannabinoid HU-210.76 Other studies assessed the effects

of the endogenous cannabimimetic anandamide over a

wide dose range in a series of physiological and beha-

vioural assays. These included the tetrad of tests in mice

commonly used to evaluate cannabinoid-induced effects

(motor activity, ring catalepsy, hypothermia and analgesia

tests), as well as a model for agonistic behaviour. Results

indicated that the higher doses tested (10-100 mg/kg) pro-

duced the well-known inhibitory effects in all of the above

parameters. The lowest dose of anandamide tested

(0.01 mg/kg) stimulated behavioural activities in the open

field, on the ring and aggressive behaviour in timid singly

housed mice. This dose of 0.01 mg/kg also stimulated

phagocytosis, while higher doses (1.0 and 10.0 mg/kg)

produced the opposite effects, namely inhibition of phago-

cytic activity.77

5 | BIPHASIC EFFECTS OF THC IN
NEUROGENESIS

The hippocampal dentate gyrus in the adult mammalian

brain contains neural stem/progenitor cells (NS/PCs) cap-

able of generating new neurons, that is neurogenesis.78,79

Chronic administration of the major drugs of abuse includ-

ing opiates, alcohol, nicotine and cocaine has been reported

to suppress hippocampal neurogenesis in adult rats.80-83

However, pharmacological studies have demonstrated an

important role for endocannabinoid signalling in promoting

neuronal survival after cerebral ischaemia or trauma.84 In

addition, the important finding in 2004 of prominently

decreased hippocampal neurogenesis in CB1-knockout

mice (mice which lack CB1 receptors)85 suggested that

CB1 receptor activation by endogenous, plant-derived, or

synthetic cannabinoids could promote hippocampal neuro-

genesis. One year later, Jiang et al37 demonstrated that

chronic treatment with both the synthetic cannabinoid

HU210 and the endocannabinoid anandamide (AEA)

promoted hippocampal neurogenesis and exerted anxi-

olytic- and antidepressant-like effects and made a reflective

statement: “cannabinoids appear to be the only illicit drug

whose capacity to produce increased hippocampal newborn

neurons is positively correlated with its anxiolytic- and

antidepressant-like effects”.37

These findings are in contrast with those of Rueda

et al,86 who reported an inhibition of adult hippocampal

neurogenesis. The differing regulatory effects of endo-

cannabinoid shown in these studies may be produced by the

opposing effects (hormesis) induced by high and low doses

of exocannabinoids87 and endocannabinoids.77 In detailed

examinations of the effects of HU210 on NS/PC prolifera-

tion, Jiang and co-workers37 cultured embryonic NS/PCs

(neural stem/progenitor cells) incubated with different con-

centrations of HU210 (synthetic agonist of THC). When

10 nmol/L to 1 lmol/L of HU210 were added to the culture

medium containing the mitogenic growth factors bFGF and

EGF, the WST-8 assay showed a significant increase in NS/

PC proliferation, whereas 10 lmol/L produced profound

toxic effects on cultured NS/PCs.37 Rueda and co-workers86

used a 5 lmol/L AEA concentration and detected an inhibi-

tion of neuronal differentiation. Based on these reports, it is

evident that at low concentrations (up to 1 lmol/L),

cannabinoids are able to induce neurogenesis, while at

higher concentrations, neurogenesis is impaired.

6 | THC PARADOX IN MEMORY

The majority of research undoubtedly demonstrates that

THC in high concentrations impairs memory and cognition,

due to their ability to inhibit cholinergic transmission in the
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limbic system and cortex, and the memory deficits

observed with THC resemble those seen following adminis-

tration of cholinergic antagonists.88

Unfortunately, scientists have looked only at one side of

the coin due to the inability or refusal to see beyond the

current models of thinking.89 A paradigm is a set of

assumptions, concepts, values and practices that constitute

ways of viewing reality for the community that shares

them, especially in an intellectual discipline.89 The next

example illustrates how paradigms have negatively influ-

enced scientific research. The first major effort to explore

whether drugs could enhance learning in animal models

was undertaken at the University of California at Berkeley

in the Department of Psychology during the 1960s. While

these efforts extended earlier preliminary investigations at

the University of Chicago and elsewhere, the Berkeley

group created a new research direction that lead to the

development of valuable drugs in the treatment of cognitive

disabilities as seen with Alzheimer’s disease (AD) and

related diseases of ageing. In fact, the initial breakthrough

was undertaken by then two graduate students (James

McGaugh and Lewis Petrinovitch), who hypothesized that

memory was related to the concentrations of acetylcholine

released by the neurons. With this guiding framework,

these students tried to determine why some mice were

bright (ie smart), and others were dull (ie not so smart). To

test this hypothesis, they administered a drug over a broad

dose range to the bright and dull mice that would prevent

the normal breakdown (ie hydrolysis) of the acetylcholine.

The agent used to slowdown the normal breakdown of

acetylcholine was physostigmine, a natural constituent of

the Calabar bean. The treatment was expected to make the

dull mice brighter and the bright mice even brighter, but

only up to a point, that is, when the dose exceeded a hypo-

thetical optimal zone, triggering a decline in performance.

Both dull and bright exhibited the characteristic U-shaped

dose-response relationship, thereby confirming the study

hypothesis. The manuscript based on these findings was

rejected by the editor because “the results of your paper

upset a fundamental pharmacological assumption that no

drug improves behaviour.” One of the two students perse-

vered, publishing a paper several years later,90 opening up

a new era in the psychology and pharmacology of learning

and memory research.91

It has long been recognized that an important element of

the action of THC may be its ability to inhibit cholinergic

transmission in the limbic system and cortex.88 Early studies

revealed that ∆9-THC reduced uptake of choline in the hip-

pocampus, thereby restricting acetylcholine synthesis.92,93

Several cannabinoid agonists have been shown to inhibit elec-

trically evoked acetylcholine release in hippocampal

slices92,94 and synaptosomes.95 Similarly, microdialysis stud-

ies in awake rats also showed cannabinoid-induced decreases

in acetylcholine release.96,97 This effect on hippocampal

acetylcholine release is clearly CB1 receptor-mediated, as all

the afore-mentioned studies demonstrated that SR-141716 (a

CB1 receptor antagonist) blocks the effect.28

The dominant paradigm affirming that THC impairs

memory and cognition has been lately challenged by a

group of scientists who has shown that THC is also able to

improve neurological function in old animals when chroni-

cally administered at low doses. Such improvement could

be related with THC’s capacity to inhibit AChE (acetyl-

cholinesterase, the enzyme that catalyzes the breakdown of

acetylcholine), thus increasing ACh levels, as well as pre-

venting AChE-induced Ab aggregation by binding in the

peripheral anionic site of AChE, the critical region

involved in amyloidogenesis. It is noteworthy that THC is

a considerably more effective inhibitor of AChE-induced

Ab deposition than the approved drugs for Alzheimer’s dis-

ease treatment, donepezil and tacrine, which reduced Ab

aggregation by only 22% and 7%, respectively.98

7 | DOSE- AND AGE-DEPENDENT
EFFECTS OF THC ON MEMORY

Compelling data have shown that memory is also affected

in a biphasic fashion. Puighermanal and colleagues29 stud-

ied mice treated with vehicle or different doses of THC

(0.3, 1, 3 and 10 mg/kg, i.p.) immediately after the training

session in the object recognition test. Doses of 3 or 10 mg/

kg induced a significant amnesic-like effect tested 24 hour

later, while lower doses did not produce memory deficits.

A similar result was reported by Han et al99 who used a

5 mg/kg dose of THC, and Varvel et al88 who observed

memory deficits with 10 mg/kg of THC. These results

clearly demonstrate that memory impairment is due to the

use of high THC concentrations. Conversely, other scien-

tists showed that THC at an extremely low concentration

(2.5 nmol/L), and other synthetic agonists at similar con-

centrations have the capacity to slow or halt Alzheimer’s

disease progression by reducing the synthesis of its major

pathological marker, amyloid beta.39,40,100

In addition to this positive effect at low concentrations,

there is evidence that Cannabidiol (CBD) is able to block

some negative effects of THC.101,102 The hypothesis that

cannabidiol impacts on the effect of ∆9-THC was firstly

postulated by Rottanburg et al,103 who found an increased

prevalence of psychotic disorders among users of cannabis

with high ∆9-THC content and lack of cannabidiol, and

was confirmed by other researchers, who found that canna-

bis with high-CBD content is associated with fewer psy-

chotic experiences than cannabis with low-CBD

content.104,105 It has also been observed that cannabidiol,

co-administered with 9-THC, significantly reduced the
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psychotomimetic symptoms induced by ∆9-THC,106 and

that pretreatment with CBD prevented the acute induction

of psychotic symptoms by delta-9-tetrahydrocannabinol.107

Additional studies have provided evidence that wild-type

mice chronically receiving THC + CBD do not exhibit

memory impairment.41 This observation supports previous

work showing that CBD is able to antagonize THC-

induced deficits in memory tasks108-110 and highlights the

relevance of combining the two natural cannabinoids, THC

and CBD, to mitigate the negative consequences of THC

administration.101 These findings show that the combina-

tion of THC and CBD exhibits a better therapeutic profile

than each cannabis component alone and supports the con-

sideration of a cannabis-based medicine as potential ther-

apy against Alzheimer’s disease.41 A novel research found

that CBD attenuates a spatial working memory impairment

caused by THC in monkeys.110 The potential of CBD to

ameliorate cognitive effects of THC shows that studies in

monkeys may be more translational than those in rodents;

these results also suggest that a requirement for CBD-high

marijuana cultivation may be a potential regulatory avenue

for harm reduction in the face of increased liberalization of

recreational and medical marijuana laws.110

Moreover, a contemporary investigation44 showed that a

chronic low dose of ∆ 9-tetrahydrocannabinol (THC)

restores cognitive function (reduction of memory deficits

and increased learning capacity) in old mice. This beha-

vioural effect was accompanied by enhanced expression of

synaptic marker proteins and increased hippocampal spine

density. The authors showed that THC exposure in mature

and old mice (12 and 18 months, respectively) restored

cognitive function to a level similar to that in young

untreated mice. By contrast, they found in young adult

mice (2 months old) that THC exposure has a deleterious

effect on cognition, a finding that is in agreement with pre-

vious studies33,41,111,112

The beneficial effects of low-dose THC administration

are dependent on an epigenetic mechanism involving his-

tone acetylation.44 This is in line with previous findings

showing that enhanced histone acetylation can result in

recovery of cognitive abilities in old mice.113 Attempts to

reverse age-related epigenetic processes through a pharma-

cological blockade of histone deacetylases have shown

some promise in rodents,114,115 but the deleterious side

effects have prevented application in humans.116 Conse-

quently, the generalized inhibition of histone deacetylation

is not further considered to be a suitable treatment of age-

related pathologies. In contrast, cannabis preparations and

THC are used for medicinal purposes. They have an excel-

lent safety record and do not produce adverse side effects

when administered at a low dose to older individuals.

Thus, chronic, low-dose treatment with THC or cannabis

extracts could be a potential strategy to slow down or even

to reverse cognitive decline in the elderly.44 Furthermore, a

recent study45 demonstrated that a single injection of an

ultra-low dose of THC (0.002 mg/kg) can reverse age-

dependent cognitive decline in female mice. However, it

should be emphasized that the ameliorating effect of ultra-

low THC on cognitive performance of na€ıve mice was

restricted to old animals, while in young animals (2-

3 months old mice), the same treatment induced a minor,

though significant, long-lasting cognitive deficits.111,112

The endogenous cannabinoid system is known to have a

dual, age-dependent role in the regulation of memory and

learning.117 In agreement with this fact, recent evidence

shows that a repeated low dose of THC improves cognitive

performance in a mouse model of neurodegenerative dis-

ease in old mice, whereas it induces memory impairment

in healthy mice.41

In a comprehensive review, Sarne and colleagues118 dis-

cussed these opposite effects of ultra-low doses of THC in

terms of “conditioning” where a minor insult activated an

endogenous compensatory system that protected the organ-

ism from other insults. Thus, it was not surprising to find

that, ultra-low THC improved memory in naive old mice,

which were cognitively impaired due to ageing, similarly

to its effect in challenged young mice which were cogni-

tively impaired due to neurotoxic insults.

Recently, Calabrese119,120 provided the first extensive

documentation and assessment of the dose-response fea-

tures of pre- and postconditioning studies that conform to

an hormetic dose-response. The range and diversity of pre-

conditioning agents are extensive, involving a complex

array of pharmacological, chemical and mechanistic

approaches. Furthermore, Calabrese120 provided the first

report that hormetic dose-response occur for both early and

delayed preconditioning-induced protection.

In addition to biphasic dose-response, there are mecha-

nisms that are known to contribute to the dual effects of

cannabinoids, such as age and stage of development of the

organism, acute vs. chronic application; immediate vs.

delayed response or the dependency of the effect on the

physiological status of the organism.42-45,121-123

8 | CONCLUSIONS

The biphasic dose-response model challenges long-standing

beliefs about the nature of the dose-response in a low dose

zone. Many researchers did not focus on the low dose

stimulatory responses provided in their tables and figures,

choosing to address only the high concentration effects.124

Paradigms affect the way scientists do research: they serve

to define what should be studied, what questions should be

asked, and what rules should be followed in interpreting

the answers obtained.125
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For many years, most scientists dogmatically accepted

that THC impairs memory. This paradigm was supported

by teachers, researchers, scientific papers and academic

institutions. In his book: the structure of scientific revolu-

tions, Thomas Khun89 wrote that “scientific revolutions are

those noncumulative developmental episodes in which an

older paradigm is replaced in whole or in part by an

incompatible new one. A scientific revolution occurs,

according to Kuhn, when scientists encounter anomalies

that cannot be explained by the universally accepted para-

digm within which scientific progress has thereto been

made. Such anomalies are the base for the construction of

a new paradigm:

THC modulates memory and cognition in a biphasic

and age-dependent manner: in old animals, low concentra-

tions improve memory and cognition while high concentra-

tions impair these functions; in young animals, even a low

concentration is detrimental.

These findings coincide with what has been observed in

humans: an irrefutable evidence that the use of marijuana

affects the memory and cognition mainly in young people.

This is very important because the idea that marijuana is a

“soft” drug and that it is not dangerous has been generaliz-

ing. We argue that healthy young people should not smoke

marijuana or ingest cannabinoids. The beneficial effects of

low THC concentrations seem to apply only to old peo-

ple with neurological impairment due to ageing or some

neurodegenerative disorders like Alzheimer.

From the pharmacological standpoint, it has been sug-

gested that studies evaluating the effects of neurotransmit-

ters, hormones or virtually any other substance should

involve a wider concentration range with the aim to detect

their full spectrum of effects.58
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