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Abstract

Purpose of Review  To consolidate information on the obesogenic and cardiometabolic effects of prenatal exposure to cannabis.

Recent Findings  A PubMed search strategy updated from January 1, 2014, through 14 June 2023, produced a total of 47 epi-

demiologic studies and 12 animal studies. Prenatal exposure to cannabis is consistently associated with small for gestational 

age and low birth weight. After birth, these offspring gain weight rapidly and have increased adiposity and higher glucose (fat 

mass percentage) in childhood. More preclinical and prospective studies are needed to deepen our understanding of whether 

these associations vary by sex, dose, timing, and composition of cannabis (e.g., ratio of delta-Δ9-tetrahydrocannabinol 

[Δ9-THC] to cannabidiol [CBD]). Addressing these gaps may help to solidify causality and identify intervention strategies.

Summary  Based on the available data, clinicians and public health officials should continue to caution against cannabis use 

during pregnancy to limit its potential obesogenic and adverse cardiometabolic effects on the offspring.
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Introduction

Amid increasing legality and growing cultural acceptance, can-

nabis use in pregnancy is becoming increasingly common. Self-

reported data from the 2018 National Survey on Drug Use and 

Health estimate that 3.7% of pregnant people use cannabis [1]. 

The survey data further shows a higher prevalence among preg-

nant people who were younger (13.1%) [1] or with a cognitive 

disability (13.0%) [2] or depression (12.7%) [1]. However, these 

estimates likely suffer from underreporting. In fact, bioanalytic 

data from urban hospital settings suggest that up to 30% of 

pregnant people use or are exposed to cannabis [3, 4].

The reasons for cannabis use vary [5]. Pregnant people 

report using cannabis to manage nausea, to cope with stress 

or anxiety, and/or for relaxation and enjoyment [6]. There 

are risks to the offspring that should be weighed in the deci-

sion to use cannabis during pregnancy. Prenatal exposure to 

cannabis was associated with adverse birth outcomes, such 

as lower birth weight, smaller head circumference, lower 

Apgar scores, and an increased risk for admission to the 

neonatal intensive care unit (NICU), as well as altered neu-

robehavioral traits among older child offspring [7–11].

More recently, evidence suggests that prenatal exposure 

to cannabis may predispose the offspring to obesity, altered 

glucose homeostasis, and impaired cardiac function [12], but 

there is a need to better understand this growing science. Thus, 

the goals of this review are to (1) establish the obesogenic 

and cardiometabolic risks of prenatal exposure to cannabis; 

(2) recontextualize the cannabis-birth weight literature with 

respect to childhood obesity and metabolic disorders; (3) pro-

pose biological mechanisms underlying these associations; (4) 

compare the effects of common cannabinoids, namely, delta-

Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD); 

and (5) highlight critical gaps in knowledge that are needed 

to infer causality and identify opportunities for intervention.

Methods

A PubMed search strategy was updated through 14 June 

2023. The search algorithm included all possible com-

binations of keywords from the following three groups: 

(1) “cannabis,” “marijuana,” “THC,” or “CBD”; and (2) 
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“pregnancy,” “prenatal,” “in utero,” “fetal,” “offspring,” 

“infant” or “early life”; and (3) “birth outcomes,” “birth 

weight,” “weight,” “obes*,” “body mass index,” “fat mass,” 

“adipo*,” “glucose,” “insulin,” “metabolic syndrome,” “car-

dio*,” “cardiac,” “blood pressure,” “cholesterol,” “hyper-

tension,” or “lipid.” This review focused on papers pub-

lished since 2014, given the increasing legality of cannabis 

for recreational use over the past decade and changes in 

cannabis potency [13].

Results

The PubMed search identified 1898 publications. After 

removing duplicates, 491 unique publications were screened. 

Of these, 432 were excluded for the following reasons: com-

mentaries or reviews (n = 71); neurodevelopment, cognitive, 

or behavioral outcomes (n = 72); other unrelated health out-

comes (n = 86); studies of hemp oil, synthetic or endogenous 

cannabinoids, or the endocannabinoid system (n = 36); poly-

substance use or drugs other than cannabis (n = 24); char-

acteristics or reasons for cannabis use (n = 43); prevalence 

studies (n = 18); biomarker studies (n = 16); cessation or 

prevention studies (n = 9); health policy analyses (n = 3);  

effects of pre-conception cannabis use (n = 3); abstracts or reports 

presenting insufficient data (n = 2); and papers focused entirely 

on unrelated exposures and outcomes (n = 50). Thus, 47 epide-

miologic studies [3, 4, 14–18, 19••, 20–28, 29•, 30–33, 34••, 

35–58] and 12 animal models [59, 60••, 61, 62, 63••, 64, 65••, 

66•, 67–70] presenting original data met the inclusion criteria for  

this review.

Evidence from Human Studies

Table 1 summarizes the 47 human epidemiologic studies [3, 4, 

14–18, 19••, 20–28, 29•, 30–33, 34••, 35–58]. The most com-

mon study design was a retrospective medical record review, 

followed by a prospective cohort study. Cannabis exposure 

was most often ascertained through self-report (n = 22; 47%), 

though many studies measured Δ9-THC in maternal urine col-

lected in pregnancy (n = 17; 36%). Four studies captured expo-

sure through Δ9-THC detected in meconium or umbilical cord 

tissue homogenate collected at delivery (9%). Cannabis use dis-

order was the primary exposure of interest in three studies (6%). 

The prevalence of cannabis use or exposure during pregnancy 

in the absence of other substances ranged from 2.0 to 38.9%. 

Co-use of cannabis and other drugs of abuse is common. In a 

Table 1   Human studies on prenatal exposure to cannabis and offspring birth weight, postnatal growth, adiposity, and cardiometabolic health

Birthweight (g)

Reference Study location and description (n) Exposure assessment Exposed Mean difference Forest plot

Bailey et al. [14] USA, case-control (n=531 exposed; 531 controls) Urine THC (delivery) - -218; p<0.01 (no CIs)

Brik et al. Spain, case-control (n=60 exposed; 198 controls) Urine THC (1st/3rd trimester) - -732; p<0.01 (no CIs)

Howard et al. USA, Retrospective medical record review (n=2,173) Urinary THC 22.6% -75; p<0.01 (no CIs)

Janisse et al. USA, Prospective cohort study (n=3,164) Self-report 24.2% -55; p<0.05 (no CIs)

Mark and Crimmins USA, Retrospective medical record review (n=1,540) Urinary THC (maternal, neonate) 7.4% -371; p<0.01 (no CIs)

Metz et al. USA, multi-center case-control of stillbirth (n=803) THC (umbilical cord); record 4.0% -65; p=0.53 (no CIs)

O’Connor et al. USA, Retrospective medical record review (n=191) Urinary THC (opioid-dependent) 40.0% -108; p=0.12 (no CIs)

Rodriguez et al. USA, Retrospective medical record review (n=5,343) Urinary THC; self-report 17.5% -142; p<0.01 (no CIs)

Brown et al. Australia, Cross-sectional, population-based (n=344) Self-report 20.5% -419 (-672, -165)

Dodge et al. USA, Retrospective medical record review (n=280) Urinary THC; self-report 38.9% -154 (SE: 75.4) 

Gabrhelik et al. Norway, MoBa cohort study (n=10,101) Self-report 2.6% -228 (-354, -102)

Grzekowiak et al. Multi-country, SCOPE cohort (n=5,610) Self-report 5.6% -127 (-238, -17)

Jones et al. USA, Retrospective medical record review (n=1,540) Meconium THC 31.3% -160 (-220, -100)

Ko et al. USA, PRAMS data from 3 states (n=9,031) Self-report 4.2% -36 (-94, 22)

Koto et al. Canada, Population-based retrospective (n=106,282) Self-report 7.5% -100 (-120, -82)

Massey et al. USA, pooled analyses of three cohorts (n=1,191) Self-report, biomarker, record 22.9% -84 (-159, -9)

Michalski et al. Ontario Birth Study, neonates (n=1,778) Self-report 9.7% -86 (-155, -17)

Paul et al. USA, ABCD prospective cohort study (n=11,875) Retrospective self-report 2.2% -74 (-150, -3)

Roca et al. Spain, Retrospective medical record review (n=372) Meconium THC 6.4% +40 (no CIs)

Straub et al. USA, Retrospective medical record review (n=5,343) Urinary THC 23.7% -91 (-120, -62)

Umer et al. USA, Retrospective medical record (n=34,412) Self-report, urinary, record 7.9% -72 (-97, -47)

Overall 15.74% -96 (-116, -76)

Birthweight (Z-score)

Reference Study location and description (n) Exposure assessment Exposed Mean difference Forest plot

Brar et al. USA, case-control (n=221 exposed; 221 controls) Self-report - 0.4; p<0.01

(% converted to Z)

Roca et al. Spain, Retrospective medical record review (n=372) Meconium THC 6.4% −0.2

(% converted to Z)

Sturrock et al. USA, Retrospective medical chart review (n=4,465) Medical records 2.4% −0.2 (no CIs)

Overall 4.4%

Low birth weight (<2,500g)

Reference Study location and description (n) Exposure assessment Exposed Adjusted OR

Brown et al. Australia, Cross-sectional, population-based survey (n=344) Self-report 20.5% 3.9 (1.4, 11.2)

Coleman-Cowger et al. USA, Retrospective medical chart review (n=500) Self-report 12.1% 1.0 (0.1, 7.9)

Conner et al. USA, Retrospective medical chart review (n=8,138) Urinary THC, self-report 8.4% 1.3 (0.9, 1.8)

Crume et al. USA, Colorado PRAMS (n=3,207) Self-report 5.7% 1.5 (1.1, 2.1)

Haight et al. USA, PRAMS data from 8 states (n=5,548) Self-report 7.3% 2.1 (1.1, 3.9)

Jones et al. USA, Retrospective medical record review (n=1,540) Meconium THC 31.3% 1.9 (1.3, 2.7)

Joseph-Lemon et al. USA, perinatal data registry (n=19,286) Self-report 3.2% 1.8 (1.1, 3.1)

Kharbanda et al. USA, retrospective medical record review (n=3,435) Urinary THC 8.2% 1.3 (0.9, 1.9)

Luke et al. Canada, prospective population registry (n=1,280,447) Self-report 2.0% 1.9 (1.8, 2.0)

Mark et al. USA, retrospective cohort (n=170) Urinary THC (delivery) 29.3% 0.9 (0.3, 2.5)

Michalski et al. Ontario Birth Study (n=1,778) Self-report 9.7% 0.9 (0.3, 2.9)

Nguyen and Harley USA, PRAMS data from 20 states (n=32,583) Self-report 4.9% 1.3 (1.1, 1.5)

[16]

[24]

[25]

[32]

[45]

[36]

[52]

[17]

[46]
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[23]

[3]

[28]

[30]

[56]

[33]

[37]

[38]

[41]

[43]

[15]

[38]

[42]

[17]

[47]

[20]

[21]

[48]

[3]

[26]

[27]

[31]

[4]

[33]
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case-control study, Kong et al. [29•] reported that co-use of 

tobacco and cannabis in pregnancy was nearly 41.3%. Three 

studies estimated that cannabis use among opioid-dependent 

pregnant people ranged from 9.4% [40] to 40.0% [36].

Forty-four studies examined the associations between 

prenatal exposure to cannabis and birth weight (as a con-

tinuous measure), low birth weight (< 2500 g), or small for 

gestational age (SGA; < 10th percentile). Prenatal exposure 

to cannabis was associated with a 55 to 732 g reduction in 

birth weight, with most studies (17 out of the 21) showing a 

statistically significant reduction in birth weight, independ-

ent of gestational age and sex. Roca and colleagues [38] 

reported that prenatal exposure to cannabis was associated 

with a 40 g increase in birth weight among NICU-admitted 

neonates. However, consistent with findings by Sturrock and 

colleagues [42], they reported that prenatal exposure to can-

nabis was associated with a lower birth weight percentile. 

No effect was noted in a retrospective medical record review 

of opioid-dependent pregnant people [36], in a population-

based case-control study of stillbirths [45], or in a cross-

sectional analysis of Pregnancy Risk Assessment Monitor-

ing System (PRAMS) data [28].

Prenatal exposure to cannabis was associated with a 

statistically significant increase in odds of LBW (adjusted 

odds ratios [aORs] ranging from 0.9 to 3.9; 11 out of 16 

studies showing statistical significance) and SGA (aORs 

ranging from 1.1 to 2.0; 12 of 17 studies showing statisti-

cal significance). The effects were generally independent of 

gestational age, sex, tobacco/substance in pregnancy, and 

socioeconomic covariates, such as household income or 

Table 1   (continued)

Oni et al. [50] Australia, data linkage study (n=622,630) Prenatal cannabis use disorder 0.3% 3.6 (3.0, 4.1)

Shah et al. USA, Retrospective medical record review (n=2,368) Self-report, among opioid-dependent 4.6% 2.0 (1.8, 3.4)

Stein et al. USA, population-based health system data (n=4584) Self-report, among opioid-dependent 9.4% 1.5 (1.1, 1.9)

Umer et al. USA, medical chart review (n=34,412) Self-report, urinary, or medical record 7.9% 1.3 (1.1, 1.5)

Overall 11.0%a 1.7 (1.3, 2.0)

Small for gestational age (<10th percentile)

Reference Study location and description (n) Exposure assessment Exposed Adjusted OR

Bruno et al. USA, nuMoM2b prospective cohort (n=9,163) Urinary THC 1.5% 22% (Exp) vs. 9% 

(Control); p<0.01

Dotter-Kat et al. USA, RCT of MgSO4 to prevent cerebral palsy (n=1,867) Urinary THC or self-report 7.2% 3% (Exp) vs. 2.4% 

(Control); p=0.66

Metz et al. USA, multi-center case-control of stillbirth (n=1,610) Umbilical THC or self-report 3.0% 8.2% (Exp) vs. 7.4% 

(Control); p=0.83 

Rodriguez et al. USA, Retrospective medical record review (n=5,343) Urinary THC; self-report 17.5% 26% (Exp) vs. 17% 

(Control); p<0.01

Brown et al. Australia, Cross-sectional, population-based (n=344) Self-report 20.5% 1.7 (0.6, 4.4)

Corsi et al. USA, case-control study (n=5,639 exposed, 92,873 control) Self-report - 1.41 (1.36, 1.45)

Crume et al. USA, Colorado PRAMS (n=3,207) Self-report 5.7% 1.3 (0.8, 2.2)

Kharbanda et al. USA, retrospective medical record review (n=3,435) Urinary THC 8.2% 1.7 (1.2, 2.3)

Koto et al. Canada, Population-based retrospective study (n=106,282) Self-report 7.5% 1.5 (1.3, 1.7)

Leemaqz et al. Multi-country, SCOPE cohort (n=5,588) Self-report 5.3% 1.8 (0.9, 3.8)

Luke et al. Canada, Prospective population registry (n=243,140) Self-report 2.4% 1.5 (1.3, 1.6)

Luke et al. Canada, Prospective population registry (n=1,280,447) Self-report 2.0% 1.2 (1.1, 1.3)

Michalski et al. Ontario Birth Study (n=1,778) Self-report 9.7% 2.0 (1.3, 3.3)

Nguyen and Harley USA, PRAMS data from 20 states (n=32,583) Self-report 4.9% 1.4 (1.1, 1.7)

Prewitt et al. USA, Retrospective medical chart review (n=4,465) Prenatal cannabis use disorder 0.4% 1.5 (1.4, 1.6)

Shi et al. USA, Population-based retrospective (n=4,830,239) Prenatal cannabis use disorder 0.7% 1.1 (1.08, 1.18)

Warshak et al. USA, Retrospective medical chart review (n=4,465) Urinary THC; Self-report 5.6% 1.3 (1.1, 1.5)

Overall 1.4 (1.3, 1.6)

Postnatal growth and cardiometabolic health

Reference Study location and description (n) Exposure assessment Exposed Effect

Cajachaqua-Torres et al. Netherlands, Generation R prospective cohort,

10 years (n=4,792)

Self-report 2.5% BMI: 0.3 (0.1, 0.4)

FMI: 0.1 (0, 0.3) 

TGs (mmol/L): 0.2 

(0.1, 0.3)

Glucose (mmol/L):

0 (-0.2, 0.3)

Insulin (uU/mL): 0 

(-0.3, 0.3)

Kong et al. USA, Prospective cohort study,

9-12 years (n=262)

Co-exposure to both tobacco and cannabis

(unable to separate effects of cannabis)

41.3% Co-exposure to

tobacco and 

cannabis was

associated with rapid

BMI trajectory

through mid-

childhood (B=0.14,

SE=0.06, p<0.05)

Adiposity: 5.9,

SE=2.3, p < 0.05

Moore et al. USA, Healthy Start prospective cohort study,

5 years (n=103)

Urinary cannabinoids, including THC and 

CBD (27 weeks)

14.6% BMI (kg/m2): -0.1 

(-1.6, 1.5)

Adiposity: 2.6 (0.1,

5.2)

Glucose (mg/dL):

5.6 (0.8, 10.3)

Insulin (uU/mL):

2.2 (-0.4, 4.8)

[58]

[40]

[43]

[18]

[54]

[55]

[52]

[17]

[57]

[21]

[27]
[30]

[53]
[51]

[31]

[33]

[35]

[49]

[39]

[44]

[19]

[29]

[34]

BMI body mass index, CBD cannabidiol, FMI fat mass index, MoBa Mother and Child Cohort Study, PRAMS Pregnancy Risk Assessment Mon-

itoring System, RCT​ randomized controlled trial, SCOPE Screening for Pregnancy Endpoints, TGs triglycerides, THC Δ9-tetrahydrocannabinol
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maternal education. However, the potential for confounding 

remains moderate. Two studies presented unadjusted models 

[32, 36], few studies adjusted for maternal pre-pregnancy 

body mass index (BMI) or gestational weight gain, and none 

adjusted for maternal diet in pregnancy.

Only one published study has examined the associa-

tion between prenatal exposure to cannabis and postnatal  

growth. Using data from a New York–based prospective 

cohort, Kong et al. [29•] reported that co-exposure to tobacco 

and cannabis was associated with rapid BMI growth from  

birth through mid-childhood. However, the effects of can-

nabis could not be isolated from the effects of tobacco. In 

an unpublished manuscript, I (along with my co-authors) 

showed that prenatal exposure to cannabis was associated 

with rapid BMI growth from birth through age 3 years in 

the Healthy Start study. Together, these studies suggest that 

cannabis-exposed infants are smaller at birth, grow rapidly 

in infancy, and exceed the BMI of unexposed offspring 

by ~9 months of age. This pattern of growth is often associ-

ated with an increased risk for obesity [71], metabolic syn-

drome [72], and type 2 diabetes [73] later in life.

In the Generation R Study, Cajachagua-Torres and col-

leagues [19••] reported that maternal or paternal self-report of  

cannabis use during pregnancy was associated with higher 

triglycerides and BMI among 10-year-old offspring. This 

finding is supported by the work of Moore et al. [34••] and 

Kong et al. [29•], which reported higher adiposity (fat mass 

percentage) among Δ9-THC-exposed children. However, 

there is some uncertainty around the effects on metabolic out-

comes. Cajachagua-Torres and colleagues [19••] reported no 

association with non-fasting glucose. Conversely, Moore and 

colleagues [34••] showed that prenatal exposure to cannabis 

was associated with increased fasting glucose at age 5 years.

Evidence from Animal Studies

Table 2 summarizes the 12 animal studies included in this 

review [59, 60••, 61–70]. Wistar rats were the most common 

model, followed by C57BL/6 J mice and Sprague-Dawley rats. 

All but one study included both sexes in their experiments. 

The route of exposure varied, with most experiments utilizing 

intraperitoneal injection or oral administration. Exposure typi-

cally occurred between 6 and 22 days gestation, though some 

studies included exposure during mating and through weaning.

The doses administered to the rodents ranged from 2 to 

10 mg/Kg of Δ9-THC per day and 3 to 20 mg/Kg of CBD 

per day. This dose mimics moderate recreational cannabis 

use in human adults (13 to 63 ng/mL), which results in a 

fetal dose between 4 and 287 ng/mL [60••].

Seven of the eight animal studies reported lower birth 

weights among offspring with prenatal exposure to Δ9-THC. 

Breit and colleagues [59] found no association, though the 

Sprague-Dawley rats were exposed only once (30 min of 

cannabis smoke at gestational day 20). This may provide 

insight about how frequency and dose may influence off-

spring birth weight and later-life adiposity.

Both Δ9-THC and CBD appear to impact postnatal 

growth. Compared to non-exposed offspring, Δ9-THC-

exposed offspring are born smaller, “catch-up” in as little 

as 12 days [60••, 62], and begin to surpass the size of non-

exposed offspring by age 6 months [65••]. Prenatal CBD 

may impact postnatal growth in a sex-specific manner, with 

males being more susceptible to this environmental insult 

[61, 67], but the evidence is not conclusive [70].

Prenatal exposure to Δ9-THC impacts many aspects of 

offspring’s cardiovascular and metabolic health. Robinson 

and colleagues [66•] demonstrated that C57BL/6 J mice with 

prenatal exposure to Δ9-THC had myocardial valve thicken-

ing and ventricular septal defect. These structural changes 

to the fetal heart may have long-lasting impacts on cardio-

vascular function. Indeed, Lee and colleagues [63••] dem-

onstrated that prenatal Δ9-THC was associated with lower 

stroke volume and cardiac output. Additional animal stud-

ies conducted at the University of Western Ontario revealed 

that prenatal Δ9-THC was associated with increased glucose  

intolerance at age 5 months among female offspring only 

[60••] and higher hepatic triglycerides at age 6 months among 

male offspring only [65••]. Taken together, studies provide  

some evidence that prenatal exposure to Δ9-THC may pre-

dispose offspring to dyslipidemia and hyperglycemia across 

the life course.

Discussion

Biological Mechanisms

An important tenet of the causal inference framework is to 

establish the biological plausibility of the observed associa-

tions. Figure 1 summarizes the possible biological mecha-

nisms linking prenatal exposure to cannabis with offspring 

obesity, cardiovascular health, and metabolic disorders.

Preclinical studies show that Δ9-THC leads to placental 

insufficiency [15, 64, 74], which may hinder fetal growth. 

When fetal growth restriction is followed by rapid infant 

growth, the offspring may be predisposed to abdominal obe-

sity, type 2 diabetes, and cardiovascular disease [75]. How-

ever, Metz and colleagues [45] theorized that the adverse 

birth effects induced by prenatal exposure to cannabis may 

be independent of abnormal placental pathology. Thus, other 

mechanisms may be involved.

Fetal programming in mesenchymal stem cells (MSCs) 

may play an important role in the cannabis-obesity associa-

tion. Both Δ9-THC [76] and CBD [77] promote adipogen-

esis in human and mouse MSCs via peroxisome prolifera-

tor–activated receptor gamma (PPARγ) activation. Excessive 
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Table 2   Animal studies of prenatal exposure to cannabinoids and offspring growth, adiposity, and cardiometabolic health

Birth weight

Reference Cannabinoid Model Administration Timing Dose (per day) N (exp, con) Effect

Benevenuto et al. 

[69] 

THC Balb/C mice Ambient GD 5.5–17.5 5 min of smoke 37, 30 Lower BW, 

stronger effects 

in males

Breit et al. [59] THC Sprague-Dawley 

rats

Ambient GD 20 30 min of smoke 13, 13 No difference in 

BW

Gillies et al. 

[60••]

THC Female Wistar 

rats

Intraperitoneal 

injection

GD 6–birth 3 mg/Kg 5, 6 Females: Lower 

BW

Lallai et al. [62] THC Wistar rats Oral 

administration

GD 1–20 5 mg/Kg 11, 10 Lower BW

Lee et al. [63••] THC Wistar rats Intraperitoneal 

injection

GD 6–22 3 mg/Kg 8, 8 Lower BW, lower 

heart-to-BW 

ratio

Natale et al. [64] THC Wistar rats Intraperitoneal 

injection

GD 6–22 3 mg/Kg 8, 8 Lower BW, lower 

liver-to-BW ratio

Oke et al. [65••] THC Wistar rats Intraperitoneal 

injection

ED 6.5–22 3 mg/Kg 8, 8 Lower liver-to-BW 

ratio

Robinson et al. 

[66•]

THC C57BL/6 J mice Oral 

administration

ED 3.5–

12.5/17.5

5 or 10 mg/kg 36, 31, 35 Lower fetal weight 

at ED 17.5

Postnatal growth and cardiometabolic outcomes

Asadi et al. [68] THC Wistar rats Intraperitoneal 

injection

GD 6–birth 3 mg/Kg 8, 8 Females: Increased 

glucagon-to-

insulin ratio 

(21 days)

No difference 

in glucose or 

insulin

Iezzi et al. [61] CBD C57BL/6 J mice Subcutaneous 

injection

GD 5–18 3 mg/Kg 14, 18 Males: Higher 

postnatal weight 

(10–22 days)

Females: No 

difference in 

postnatal weight

Wanner et al. 

[67]

CBD Female Avy mice Oral 

administration

Mating-weaning 20 mg/Kg 23, 26 No difference in 

postnatal weight 

(12 weeks)

Oke et al. [65••] THC Wistar rats Intraperitoneal 

injection

ED 6.5–22 3 mg/Kg 8, 8 Increased adiposity 

(6 months)

Males: Higher 

hepatic 

triglycerides 

(6 months)

Gillies et al. 

[60••]

THC Female Wistar 

rats

Intraperitoneal 

injection

GD 6–birth 3 mg/Kg 5, 6 No difference 

in postnatal 

weight (12 days, 

5 months)

Females: Glucose 

intolerance, 

decreased 

pancreatic B-cell 

mass (5 months)

Lallai et al. [62] THC Wistar rats Oral 

administration

GD 1–20 5 mg/Kg 11, 10 No difference in 

postnatal weight 

(15 days)
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adipogenesis of fetal MSCs may contribute to obesity later 

in life, regardless of offspring birth weight [78].

Cannabinoids may alter RNA regulation of dopamine 

receptor genes, as demonstrated by DiNieri et al. [79] and 

proposed by de Almeida and Devi [80]. Dysregulation of 

this key reward pathway may alter appetite and satiety and 

contribute to disinhibited eating. Murine models further 

showed that Δ9-THC-exposed male, but not female, off-

spring impacts mesolimbic dopamine function [81, 82]. This 

may explain the sex-specific effects of CBD on postnatal 

growth, as reported by Iezzi and colleagues [61].

The endocannabinoid system may be integral to the 

development of the pancreas. The endocannabinoid system 

is a complex signaling pathway involved in brain develop-

ment [83], metabolism [84], and glucose homeostasis [85]. 

Cannabinoid type 1 (CB1) receptors are abundant in both 

glucagon-producing α-cells and insulin-producing β-cells 

[86]. In a mouse model, Malenczyk and colleagues [87] 

showed that 2-arachidonoylglycerol (2-AG, an endocan-

nabinoid that is functionally similar to Δ9-THC) influenced 

islet morphology by increasing the number of pancreatic 

α-cells, which would promote glucagon release, oppose 

BW birth weight, ED embryonic day, GD gestational day, PD postnatal day

Table 2   (continued)

Postnatal growth and cardiometabolic outcomes

Lee et al. [63••] THC Wistar rats Intraperitoneal 

injection

GD 6–22 3 mg/Kg 8, 8 Lower stroke 

volume, lower 

cardiac output, 

adverse left 

ventricular 

function 

(3 weeks)

Maciel et al. [70] THC, CBD CD1 mice 3 mg/Kg 11, 14, 13 No difference in 

weight at 21 or 

60 days

Robinson et al. 

[66•]

THC C57BL/6 J mice Oral 

administration

ED 3.5–

12.5/17.5

5 or 10 mg/Kg 36, 31, 35 Myocardial 

hyperplasia, 

semilunar valve 

thickening, 

lower body/heart 

weight (21 days)

Fig. 1   Potential mechanisms 

underlying the associations 

between prenatal exposure to 

cannabinoids with child obesity 

and cardiometabolic health. 

Images were obtained from 

the free medical site http://​

smart.​servi​er.​com/ by Servier 

licensed under a Creative Com-

mons Attribution 3.0 Unported 

License

http://smart.servier.com/
http://smart.servier.com/
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insulin action, and increase blood glucose in exposed pups. 

In a separate mouse model, Gillies and colleagues [60••] 

reported that prenatal exposure to Δ9-THC was associated 

with a significant reduction (41%) of pancreatic β-cells 

and increased glucose intolerance in female Wistar rats at 

a postnatal age of 5 months. Asadi and colleagues [68] pro-

vide compelling evidence that prenatal exposure to Δ9-THC 

reprograms fetal islet endocrine hormone profile among 

female rat offspring. Specifically, stathmin-2 (Stmn2) may 

play a role in regulating offspring glucose through its inter-

action with glucagon. Taken together, these studies illus-

trate how prenatal exposure to cannabis may disrupt the 

balanced molecular control of insulin and glucagon release 

via the endocannabinoid system.

Individual Cannabinoids

Cannabis is a complex mixture of over 100 cannabinoids 

[88]. Δ9-THC and CBD are the most abundant and most 

studied cannabinoids. Disentangling the effects of Δ9-THC 

and CBD may have important health implications. Over the 

past two decades, there has been a dramatic shift in the com-

position of commercial cannabis products. Δ9-THC potency 

has increased three-fold, while the concentration of CBD has 

been halved [13]. CBD use is often perceived as safe among 

pregnant people and even some obstetrics-related medical 

professionals [89], which may explain why one in five preg-

nant people report CBD use while pregnant [90].

While structurally similar, Δ9-THC and CBD have dif-

ferent molecular targets. As such, they produce distinct and 

sometimes opposing effects. For instance, Δ9-THC is widely 

accepted as orexogenic [91], whereas CBD is often associ-

ated with reduced appetite and weight loss [92]. To date, 

there is very little published data regarding the metabolic 

effects of individual cannabinoids. This is almost certainly 

due to the scheduling status of the drug, which restricts 

access to cannabis for research purposes. A 1974 rand-

omized controlled trial reported that a single intravenous 

administration of Δ9-THC (6 mg) induced glucose intoler-

ance among healthy adult volunteers [93]. Case studies from 

1969–1970 further showed that higher doses of Δ9-THC can 

lead to glycosuria [94] and diabetic ketoacidosis [95]. By 

contrast, a recent clinical trial shows that a 10:1 ratio of CBD 

to Δ9-THC (100 µg CBD and 10 µg Δ9-THC) improves 

the lipid profile and glycemic control after 8 weeks among 

patients with type 2 diabetes [96]. Several clinical trials are 

underway examining the metabolic impacts of Δ9-THC or 

CBD administration (e.g., NCT05322213, NCT05618756, 

NCT04114903), which may further elucidate the metabolic 

effects of Δ9-THC and CBD.

Despite this growing body of evidence, it is not clear 

whether prenatal exposure to Δ9-THC and CBD would 

produce similar cardiometabolic effects on the offspring or 

whether these cannabinoids impose opposite effects, as it 

does in adult active users. Furthermore, there are other com-

mon cannabinoids that may influence glycemic control. For 

instance, a recent double-blind randomized controlled trial 

showed that tetrahydrocannabivarin (THCV) decreased fast-

ing plasma glucose and improved pancreatic β-cell function 

in adult patients with type 2 diabetes [97]. Large prospec-

tive cohorts with sufficiently large subgroups of offspring 

with prenatal exposure to Δ9-THC, CBD, and other com-

mon cannabinoids are needed to explore this question more 

conclusively in humans.

Windows of Susceptibility

Timing may be an important factor in the associations 

between prenatal exposure to cannabis and offspring adipos-

ity and cardiometabolic health. For instance, early gestation 

exposure may alter pancreatic development [87], whereas 

late gestation exposure, when the majority of fat accre-

tion occurs [98], may have a more profound effect on birth 

weight and child adiposity. Few studies have attempted to 

examine whether early vs. late gestation exposure impacts 

offspring birth outcomes. Three epidemiologic studies 

reported no effect on birth weight or child metabolic health 

if the mother quit cannabis early in the pregnancy [19••, 23, 

37]. A fourth study reported that cannabis use in the first 

trimester alone was associated with offspring birth weight, 

though the effects were more severe if cannabis use was 

sustained throughout the entire pregnancy [46]. Given this 

paucity of data, there remains a need to quantify exposure 

at multiple time points throughout pregnancy to formally 

assess trimester-specific effects.

Beyond the prenatal period, pre-conception exposure may 

predispose offspring to later-life obesity and cardiometabolic 

disease, but the evidence is inconsistent. Two human epide-

miologic studies reported that pre-conception exposure to 

cannabis was associated with lower birth weight [99, 100]. 

This may occur through the disruption of oocyte matura-

tion [101] or through epigenetic changes to sperm among 

paternal cannabis users [102]. However, this hypothesis is 

inconsistent with a preclinical study, which found no effect 

on birth weight among offspring of male Wistar rats exposed 

to Δ9-THC while mating [103]. More research is needed to 

clarify whether the epidemiologic findings are due to pre-

conception exposure alone or rather a continuation of can-

nabis use in early pregnancy.

Childhood exposure to cannabis is also a growing con-

cern. Self-reported data from the 2015 National Survey on 

Drug Use and Health estimates that 12% of adults with chil-

dren in the home use cannabis [104]. Bioanalytical stud-

ies confirm that at least this many children are exposed, 

though the prevalence may be higher in younger children. 
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Prospective data from a Colorado-based study indicates that 

13% of children, aged 5 years, had detectable levels of CBD 

in urine [105]. Cross-sectional data from Denver, CO [106] 

and New York City, NY [107] suggest that nearly 20% of 

children under 3 years of age had detectable Δ9-THC con-

centrations in urine. Given the age of these children, it is 

not clear whether these exposures occur through breast milk 

(in which Δ9-THC readily accumulates [108]), through der-

mal exposure (as cannabinoids are known to accumulate on 

surfaces [109] and young children exhibit increased hand-

to-mouth activity [110]), or through ambient exposure (an 

important route of exposure given children’s faster ventila-

tion rates [111]).

Mode, Dose, and Frequency of Use

Bioavailability varies widely based on the mode of can-

nabis use. Cannabinoids exhibit similar pharmacokinetics 

when administered via inhalation or intravenous injection: 

peak plasma concentrations occur rapidly (under 10 min) 

[112] and bioavailability is moderate (10–35%) [113]. Due 

to hepatic first-pass metabolism, the bioavailability of orally 

consumed Δ9-THC is very poor, < 20% for edible gelatin 

capsules and as low as 6% for baked goods [114]. As such, 

oral administration results in lower and more erratic plasma 

concentrations [112]. Given that edibles are the second most 

common mode of administration among pregnant people 

[115], it may be important to consider the mode of use in 

future studies examining the cardiometabolic effects of pre-

natal exposure to cannabis.

Few studies have evaluated potential dose-response 

effects, which represents an important gap in knowledge. 

Robinson and colleagues [66•] showed clear dose-dependent 

effects for 5 and 10 mg/kg Δ9-THC per day. Frequency of 

use may also impact these associations. Two epidemiologic 

studies have reported that the cannabis-birth weight associa-

tion was only evident among frequent users but not among 

infrequent users (less than once a month) [48, 116]. Addi-

tional dose-response studies are needed to identify threshold 

effects and solidify the casual nature of these associations.

Sex‑Specific Effects

The published literature provides some evidence of sexually 

dimorphic associations between prenatal exposure to can-

nabinoids and offspring cardiometabolic health, though the 

patterns and mechanisms are not yet clear.

Males appear to be more susceptible to cannabis-induced 

impacts on growth. In a longitudinal epidemiologic analysis, 

Massey and colleagues [56] reported that prenatal exposure 

to cannabis was associated with lower birth weight among 

male offspring, but not female offspring. This observa-

tion is supported by the fact that males are generally more 

susceptible to early-life environmental insults [117]. Fur-

thermore, in a mouse model, Benevenuto and colleagues 

[69] showed that prenatal exposure to cannabis smoke was 

associated with a lower fetal-placental weight ratio in male 

rat offspring only, which may imply sex-specific placental 

insufficiency.

Prenatal CBD appears to have little effect on postnatal 

growth, though there is some indication of a sex-specific 

effect. Iezzi and colleagues [61] reported that male offspring 

with developmental exposure to CBD had increased post-

natal weights, whereas both Iezzi et al. [61] and Wanner 

et al. [67] reported no difference in postnatal weight among 

female offspring, and Maciel et al. [70] reported no differ-

ence in either sex. Sex-specific weight differences may be 

due to increased bioaccumulation of CBD among males [70] 

or CBD potentially exaggerating differences in postnatal 

growth trajectories among boys and girls [118].

Prenatal Δ9-THC has been linked to increased glucose 

intolerance among female offspring only [60••], which may 

be attributable to sex-specific differences in the development 

of the endocannabinoid system [119] (which plays a key role 

in metabolism [84] and glucose homeostasis [85]) or insulin 

resistance (which tends to be higher in prepubertal girls as 

compared to prepubertal boys [120]). On the other hand, 

prenatal Δ9-THC has also been linked to higher hepatic tri-

glycerides among male offspring only [65••]. Oke and col-

leagues [65••] further showed that male, but not female, rat 

offspring exhibit decreased expression of miR-203a-3p and 

miR-29a/b/c, both involved in mitochondrial homeostasis 

in the liver. Beyond epigenetic mechanisms, this sexually 

dimorphic association may be attributed to differences in 

lipogenesis and lipolysis [121, 122].

These observations highlight the need for more animal 

models and larger epidemiologic studies with robust sam-

ple sizes that allow for effect modification by sex, which 

would help to make stronger inferences about the causal 

links between prenatal exposure and cannabis and the risk 

of childhood cardiometabolic health.

Conclusions

Cannabis use during pregnancy is on the rise and may soon 

surpass tobacco use. Between 2002 and 2016, tobacco use 

during pregnancy decreased by 40%, whereas the prevalence 

of cannabis use during pregnancy nearly doubled [123]. This 

is concerning, as the consequences of cannabis use during 

pregnancy mirror that of tobacco use during pregnancy: 

offspring are more likely to be born small, grow rapidly 

in infancy, and have a higher risk of obesity later in life. 

While the literature has rapidly expanded since 2014, key 

gaps in knowledge remain. More data is needed to under-

stand whether these associations are cannabinoid-, timing-, 
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dose-, or sex-specific, which would help to strengthen the 

biological plausibility and reinforce the need for canna-

bis cessation efforts in pregnant populations. For the time 

being, the current recommendations to limit cannabis use 

during pregnancy should continue. Healthcare providers 

should have open discussions with pregnant patients about 

the potential risks of cannabis use during pregnancy and 

provide evidence-based recommendations for safer alterna-

tives when possible.
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